IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v164y2025icp37-56.html
   My bibliography  Save this article

Parthenogenesis, sexual conflict, and selection on fertilization rates in switching environments

Author

Listed:
  • Liu, Xiaoyuan
  • Pitchford, Jon W.
  • Constable, George W.A.

Abstract

In the face of varying environments, organisms exhibit a variety of reproductive modes, from asexuality to obligate sexuality. Should reproduction be sexual, the morphology of the sex cells (gametes) produced by these organisms has important evolutionary implications; these cells can be the same size (isogamy), one larger and one smaller (anisogamy), and finally the larger cell can lose its capacity for motility (oogamy, the familiar sperm–egg system). Understanding the origin of the sexes, which lies in the types of gametes they produce, thus amounts to explaining these evolutionary transitions. Here we extend classic results in this area by exploring these transitions in a model in which organisms can reproduce both sexually and asexually. This reproductive mode is present in many algae and is accompanied by suppressed pheromone production in female populations of the brown alga Scytosiphon lomentaria. Our model investigates the co-evolution of gamete cell size with fertilization rate, which is a proxy for motility and pheromone production but is often held constant in anisogamy models. Using adaptive dynamics generalized to the case of switching environments, we find that isogamy can evolve to anisogamy through evolutionary branching, and that anisogamy can evolve to oogamy or suppressed pheromone production through a further branching driven by sexual conflict. We also derive analytic conditions on the model parameters required to arrest evolution on this isogamy–oogamy trajectory, with low fertilization rates and stochastically switching environments stabilizing isogamy under a bet-hedging strategy, and low fertilization costs stabilizing anisogamy and pheromone production.

Suggested Citation

  • Liu, Xiaoyuan & Pitchford, Jon W. & Constable, George W.A., 2025. "Parthenogenesis, sexual conflict, and selection on fertilization rates in switching environments," Theoretical Population Biology, Elsevier, vol. 164(C), pages 37-56.
  • Handle: RePEc:eee:thpobi:v:164:y:2025:i:c:p:37-56
    DOI: 10.1016/j.tpb.2025.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580925000292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2025.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:164:y:2025:i:c:p:37-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.