IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v134y2020icp61-76.html
   My bibliography  Save this article

A characterisation of the reconstructed birth–death process through time rescaling

Author

Listed:
  • Ignatieva, Anastasia
  • Hein, Jotun
  • Jenkins, Paul A.

Abstract

The dynamics of a population exhibiting exponential growth can be modelled as a birth–death process, which naturally captures the stochastic variation in population size over time. In this article, we consider a supercritical birth–death process, started at a random time in the past, and conditioned to have n sampled individuals at the present. The genealogy of individuals sampled at the present time is then described by the reversed reconstructed process (RRP), which traces the ancestry of the sample backwards from the present. We show that a simple, analytic, time rescaling of the RRP provides a straightforward way to derive its inter-event times. The same rescaling characterises other distributions underlying this process, obtained elsewhere in the literature via more cumbersome calculations. We also consider the case of incomplete sampling of the population, in which each leaf of the genealogy is retained with an independent Bernoulli trial with probability ψ, and we show that corresponding results for Bernoulli-sampled RRPs can be derived using time rescaling, for any values of the underlying parameters. A central result is the derivation of a scaling limit as ψ approaches 0, corresponding to the underlying population growing to infinity, using the time rescaling formalism. We show that in this setting, after a linear time rescaling, the event times are the order statistics of n logistic random variables with mode log(1∕ψ); moreover, we show that the inter-event times are approximately exponentially distributed.

Suggested Citation

  • Ignatieva, Anastasia & Hein, Jotun & Jenkins, Paul A., 2020. "A characterisation of the reconstructed birth–death process through time rescaling," Theoretical Population Biology, Elsevier, vol. 134(C), pages 61-76.
  • Handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:61-76
    DOI: 10.1016/j.tpb.2020.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580920300344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2020.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambert, Amaury & Stadler, Tanja, 2013. "Birth–death models and coalescent point processes: The shape and probability of reconstructed phylogenies," Theoretical Population Biology, Elsevier, vol. 90(C), pages 113-128.
    2. Burden, Conrad J. & Soewongsono, Albert C., 2019. "Coalescence in the diffusion limit of a Bienaymé–Galton–Watson branching process," Theoretical Population Biology, Elsevier, vol. 130(C), pages 50-59.
    3. Wiuf, Carsten, 2018. "Some properties of the conditioned reconstructed process with Bernoulli sampling," Theoretical Population Biology, Elsevier, vol. 122(C), pages 36-45.
    4. Lambert, Amaury, 2018. "The coalescent of a sample from a binary branching process," Theoretical Population Biology, Elsevier, vol. 122(C), pages 30-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crespo, Fausto F. & Posada, David & Wiuf, Carsten, 2021. "Coalescent models derived from birth–death processes," Theoretical Population Biology, Elsevier, vol. 142(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespo, Fausto F. & Posada, David & Wiuf, Carsten, 2021. "Coalescent models derived from birth–death processes," Theoretical Population Biology, Elsevier, vol. 142(C), pages 1-11.
    2. Steel, Mike, 2015. "Reflections on the extinction–explosion dichotomy," Theoretical Population Biology, Elsevier, vol. 101(C), pages 61-66.
    3. Lambert, Amaury, 2018. "The coalescent of a sample from a binary branching process," Theoretical Population Biology, Elsevier, vol. 122(C), pages 30-35.
    4. Ho, Lam Si Tung & Dinh, Vu, 2022. "When can we reconstruct the ancestral state? A unified theory," Theoretical Population Biology, Elsevier, vol. 148(C), pages 22-27.
    5. Wiuf, Carsten, 2018. "Some properties of the conditioned reconstructed process with Bernoulli sampling," Theoretical Population Biology, Elsevier, vol. 122(C), pages 36-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.