IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v124y2018icp1-15.html
   My bibliography  Save this article

Full likelihood inference from the site frequency spectrum based on the optimal tree resolution

Author

Listed:
  • Sainudiin, Raazesh
  • Véber, Amandine

Abstract

We develop a novel importance sampler to compute the full likelihood function of a demographic or structural scenario given the site frequency spectrum (SFS) at a locus free of intra-locus recombination. This sampler, instead of representing the hidden genealogy of a sample of individuals by a labelled binary tree, uses the minimal level of information about such a tree that is needed for the likelihood of the SFS and thus takes advantage of the huge reduction in the size of the state space that needs to be integrated. We assume that the population may have demographically changed and may be non-panmictically structured, as reflected by the branch lengths and the topology of the genealogical tree of the sample, respectively. We also assume that mutations conform to the infinitely-many-sites model. We achieve this by a controlled Markov process that generates ‘particles’ in the hidden space of SFS histories which are always compatible with the observed SFS.

Suggested Citation

  • Sainudiin, Raazesh & Véber, Amandine, 2018. "Full likelihood inference from the site frequency spectrum based on the optimal tree resolution," Theoretical Population Biology, Elsevier, vol. 124(C), pages 1-15.
  • Handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:1-15
    DOI: 10.1016/j.tpb.2018.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058091730165X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    2. Hobolth Asger & Uyenoyama Marcy K & Wiuf Carsten, 2008. "Importance Sampling for the Infinite Sites Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelleher, J. & Etheridge, A.M. & Barton, N.H., 2014. "Coalescent simulation in continuous space: Algorithms for large neighbourhood size," Theoretical Population Biology, Elsevier, vol. 95(C), pages 13-23.
    2. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.
    3. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    4. Hobolth, Asger & Wiuf, Carsten, 2009. "The genealogy, site frequency spectrum and ages of two nested mutant alleles," Theoretical Population Biology, Elsevier, vol. 75(4), pages 260-265.
    5. Uyenoyama, Marcy K. & Takebayashi, Naoki & Kumagai, Seiji, 2020. "Allele frequency spectra in structured populations: Novel-allele probabilities under the labelled coalescent," Theoretical Population Biology, Elsevier, vol. 133(C), pages 130-140.
    6. Ganapathy, Ganeshkumar & Uyenoyama, Marcy K., 2009. "Site frequency spectra from genomic SNP surveys," Theoretical Population Biology, Elsevier, vol. 75(4), pages 346-354.
    7. Kelleher, J. & Etheridge, A.M. & Véber, A. & Barton, N.H., 2016. "Spread of pedigree versus genetic ancestry in spatially distributed populations," Theoretical Population Biology, Elsevier, vol. 108(C), pages 1-12.
    8. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.
    9. Merle, C. & Leblois, R. & Rousset, F. & Pudlo, P., 2017. "Resampling: An improvement of importance sampling in varying population size models," Theoretical Population Biology, Elsevier, vol. 114(C), pages 70-87.
    10. Heuer, Benjamin & Sturm, Anja, 2013. "On spatial coalescents with multiple mergers in two dimensions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 90-104.
    11. Jenkins Paul A., 2012. "Stopping-Time Resampling and Population Genetic Inference under Coalescent Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.