IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v122y2018icp110-127.html
   My bibliography  Save this article

Establishment in a new habitat by polygenic adaptation

Author

Listed:
  • Barton, N.H.
  • Etheridge, A.M.

Abstract

Maladapted individuals can only colonise a new habitat if they can evolve a positive growth rate fast enough to avoid extinction, a process known as evolutionary rescue. We treat log fitness at low density in the new habitat as a single polygenic trait and use the infinitesimal model to follow the evolution of the growth rate; this assumes that the trait values of offspring of a sexual union are normally distributed around the mean of the parents’ trait values, with variance that depends only on the parents’ relatedness. The probability that a single migrant can establish depends on just two parameters: the mean and genetic variance of the trait in the source population. The chance of success becomes small if migrants come from a population with mean growth rate in the new habitat more than a few standard deviations below zero; this chance depends roughly equally on the probability that the initial founder is unusually fit, and on the subsequent increase in growth rate of its offspring as a result of selection. The loss of genetic variation during the founding event is substantial, but highly variable. With continued migration at rate M, establishment is inevitable; when migration is rare, the expected time to establishment decreases inversely with M. However, above a threshold migration rate, the population may be trapped in a ‘sink’ state, in which adaptation is held back by gene flow; above this threshold, the expected time to establishment increases exponentially with M. This threshold behaviour is captured by a deterministic approximation, which assumes a Gaussian distribution of the trait in the founder population with mean and variance evolving deterministically. By assuming a constant genetic variance, we also develop a diffusion approximation for the joint distribution of population size and trait mean, which extends to include stabilising selection and density regulation. Divergence of the population from its ancestors causes partial reproductive isolation, which we measure through the reproductive value of migrants into the newly established population.

Suggested Citation

  • Barton, N.H. & Etheridge, A.M., 2018. "Establishment in a new habitat by polygenic adaptation," Theoretical Population Biology, Elsevier, vol. 122(C), pages 110-127.
  • Handle: RePEc:eee:thpobi:v:122:y:2018:i:c:p:110-127
    DOI: 10.1016/j.tpb.2017.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580917300370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2017.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barton, N.H. & Etheridge, A.M. & Véber, A., 2017. "The infinitesimal model: Definition, derivation, and implications," Theoretical Population Biology, Elsevier, vol. 118(C), pages 50-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steiner, Ulrich K. & Tuljapurkar, Shripad, 2020. "Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain," Theoretical Population Biology, Elsevier, vol. 133(C), pages 159-167.
    2. Manuel Plate & Richard Bernstein & Andreas Hoppe & Kaspar Bienefeld, 2019. "Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    3. Dekens, L. & Otto, S.P. & Calvez, V., 2022. "The best of both worlds: Combining population genetic and quantitative genetic models," Theoretical Population Biology, Elsevier, vol. 148(C), pages 49-75.
    4. Olivier David & Arnaud Le Rouzic & Christine Dillmann, 2022. "Optimization of sampling designs for pedigrees and association studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1056-1066, September.
    5. Yengo, Loic & Visscher, Peter M., 2018. "Assortative mating on complex traits revisited: Double first cousins and the X-chromosome," Theoretical Population Biology, Elsevier, vol. 124(C), pages 51-60.
    6. David, Olivier & van Frank, Gaëlle & Goldringer, Isabelle & Rivière, Pierre & Turbet Delof, Michel, 2020. "Bayesian inference of natural selection from spatiotemporal phenotypic data," Theoretical Population Biology, Elsevier, vol. 131(C), pages 100-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:122:y:2018:i:c:p:110-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.