IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v220y2025ics0040162525003567.html
   My bibliography  Save this article

A data-driven approach to establishing a patent strategy by generating a patent map based on generative topographic mapping

Author

Listed:
  • Jung, Jaehoon
  • Kim, Sunhye
  • Yoon, Byungun

Abstract

As competition among companies intensifies through patents, the need for the strategic utilization and visualization of these patents is growing. However, establishing a patent strategy often relies on subjective insights from experts, which presents a significant limitation. Accordingly, this study aims to develop an analytical methodology that identifies the competitive landscape in technology and business, visualizes patent strategies, and helps in formulating future patent strategies with a focus on technical feature information. Initially, the methodology involves extracting the subject–action–object (SAO) structure from patent data, followed by the visualization of a patent map using generative topographic mapping (GTM). K-means clustering is then applied to further segment sub-technical areas. Subsequently, technology nodes on the GTM map are characterized from the perspective of companies. This process helps in deriving patent strategy patterns that reflect both technological competition and strategic intentions. Future patent strategies are established by scoring these patterns based on predictions of company occupancy using GTM-based classification (GTC) model-based vacuum nodes and other strategic quantitative indicators. This methodology particularly highlights the intersections between technological advancement and corporate competitiveness. An empirical study focusing on the autonomous vehicle industry validates the effectiveness of this methodology in providing insights about leveraging patent strategies for technological leadership. The significant contribution of this study lies in its proposition of a patent map enriched with detailed technical information from patents and the quantification and visualization of patent strategies, guiding the direction for future patent strategizing.

Suggested Citation

  • Jung, Jaehoon & Kim, Sunhye & Yoon, Byungun, 2025. "A data-driven approach to establishing a patent strategy by generating a patent map based on generative topographic mapping," Technological Forecasting and Social Change, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:tefoso:v:220:y:2025:i:c:s0040162525003567
    DOI: 10.1016/j.techfore.2025.124325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525003567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:220:y:2025:i:c:s0040162525003567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.