IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v219y2025ics0040162525003245.html
   My bibliography  Save this article

An interpretable two-stage adaptive deep learning model for humanitarian aid information prediction and emergency response support

Author

Listed:
  • Feng, Yi
  • Wang, Xinwei
  • Wang, Dujuan
  • Yin, Yunqiang
  • Ignatius, Joshua

Abstract

Diverse modes of information in social media posts during emergency responses collectively present an opportunity to advance artificial intelligence (AI) technologies to promote the integration of AI in humanitarian aid operations. To accurately identify humanitarian aid information and its categories, and to facilitate effective emergency responses, we first designed a two-stage humanitarian aid information prediction framework (THAIP). The first stage identifies humanitarian aid information and the second stage predicts the specific categories of information. We then developed an interpretable two-stage adaptive deep learning model (ITADL) based on THAIP, which adaptively determines the optimal data modality, model structure, and parameters based on the tasks at different stages. When applied to a real-world dataset from the social media platform Twitter in the context of emergency response, THAIP and ITADL achieved superior performance compared to models using a single-stage framework and several other deep learning models. Furthermore, the responses predicted by ITADL are interpreted at both global and local levels, enhancing the model's interpretability and providing valuable decision support for humanitarian aid planning and emergency response.

Suggested Citation

  • Feng, Yi & Wang, Xinwei & Wang, Dujuan & Yin, Yunqiang & Ignatius, Joshua, 2025. "An interpretable two-stage adaptive deep learning model for humanitarian aid information prediction and emergency response support," Technological Forecasting and Social Change, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:tefoso:v:219:y:2025:i:c:s0040162525003245
    DOI: 10.1016/j.techfore.2025.124293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525003245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:219:y:2025:i:c:s0040162525003245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.