Author
Listed:
- Chen, Hongshu
- Zhang, Guangquan
- Zhu, Donghua
- Lu, Jie
Abstract
The study of technological forecasting is an important part of patent analysis. Although fitting models can provide a rough tendency of a technical area, the trend of the detailed content within the area remains hidden. It is also difficult to reveal the trend of specific topics using keyword-based text mining techniques, since it is very hard to track the temporal patterns of a single keyword that generally represents a technological concept. To overcome these limitations, this research proposes a topic-based technological forecasting approach, to uncover the trends of specific topics underlying massive patent claims using topic modelling. A topic annual weight matrix and a sequence of topic-based trend coefficients are generated to quantitatively estimate the developing trends of the discovered topics, and evaluate to what degree various topics have contributed to the patenting activities of the whole area. To demonstrate the effectiveness of the approach, we present a case study using 13,910 utility patents that were published during the years 2000 to 2014, owned by Australian assignees, in the United States Patent and Trademark Office (USPTO). The results indicate that the proposed approach is effective for estimating the temporal patterns and forecast the future trends of the latent topics underlying massive claims. The topic-based knowledge and the corresponding trend analysis provided by the approach can be used to facilitate further technological decisions or opportunity discovery.
Suggested Citation
Chen, Hongshu & Zhang, Guangquan & Zhu, Donghua & Lu, Jie, 2017.
"Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014,"
Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 39-52.
Handle:
RePEc:eee:tefoso:v:119:y:2017:i:c:p:39-52
DOI: 10.1016/j.techfore.2017.03.009
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:119:y:2017:i:c:p:39-52. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.