IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i9p1637-1640.html
   My bibliography  Save this article

On efficient estimation of densities for sums of squared observations

Author

Listed:
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

Densities of functions of independent and identically distributed random observations can be estimated by using a local U-statistic. Under an appropriate integrability condition, this estimator behaves asymptotically like an empirical estimator. In particular, it converges at the parametric rate. The integrability condition is rather restrictive. It fails for the sum of powers of two observations when the exponent is at least 2. We have shown elsewhere that for the exponent equal to 2 the rate of convergence slows down by a logarithmic factor in the support of the squared observation. Here we show that the estimator is efficient in the sense of Hájek and LeCam. In particular, the convergence rate is optimal.

Suggested Citation

  • Schick, Anton & Wefelmeyer, Wolfgang, 2012. "On efficient estimation of densities for sums of squared observations," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1637-1640.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1637-1640 DOI: 10.1016/j.spl.2012.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001642
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schick Anton & Wefelmeyer Wolfgang, 2009. "Non-standard behavior of density estimators for sums of squared observations," Statistics & Risk Modeling, De Gruyter, vol. 27(1), pages 55-73, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1637-1640. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.