IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i10p995-1003.html
   My bibliography  Save this article

The pair correlation function of spatial Hawkes processes

Author

Listed:
  • Møller, Jesper
  • Torrisi, Giovanni Luca

Abstract

Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility rates and the extension to spatial Hawkes processes with random fertility rates are discussed.

Suggested Citation

  • Møller, Jesper & Torrisi, Giovanni Luca, 2007. "The pair correlation function of spatial Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 995-1003, June.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:995-1003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00039-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    2. Mugglestone, Moira A. & Renshaw, Eric, 1996. "A practical guide to the spectral analysis of spatial point processes," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 43-65, January.
    3. Jesper Møller & Jakob G. Rasmussen, 2006. "Approximate Simulation of Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 53-64, March.
    4. Anders Brix & Jesper Moller, 2001. "Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 471-488, September.
    5. Jesper Møller & Rasmus P. Waagepetersen, 2007. "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 643-684, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Magris, 2019. "On the simulation of the Hawkes process via Lambert-W functions," Papers 1907.09162, arXiv.org.
    2. Markéta Zikmundová & Kateřina Staňková Helisová & Viktor Beneš, 2012. "Spatio-Temporal Model for a Random Set Given by a Union of Interacting Discs," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 883-894, September.
    3. Reis, Edna A. & Gamerman, Dani & Paez, Marina S. & Martins, Thiago G., 2013. "Bayesian dynamic models for space–time point processes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 146-156.
    4. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    5. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Kenneth A. Flagg & Andrew Hoegh & John J. Borkowski, 2020. "Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 186-205, June.
    7. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    8. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    9. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    10. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    11. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Ramiadantsoa, Tanjona & Hanski, Ilkka & Ovaskainen, Otso, 2018. "Responses of generalist and specialist species to fragmented landscapes," Theoretical Population Biology, Elsevier, vol. 124(C), pages 31-40.
    13. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    14. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    15. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    16. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.
    17. Fama, Yuchen & Pozdnyakov, Vladimir, 2011. "A test for self-exciting clustering mechanism," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1541-1546, October.
    18. Jakob G. Rasmussen & Heidi S. Christensen, 2021. "Point Processes on Directed Linear Networks," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 647-667, June.
    19. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.
    20. Ushio Tanaka & Yosihiko Ogata, 2014. "Identification and estimation of superposed Neyman–Scott spatial cluster processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 687-702, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:995-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.