IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Wilcoxon-signed rank test for associated sequences

Listed author(s):
  • Dewan, Isha
  • Rao, B.L.S. Prakasa
Registered author(s):

    Let X1,...,Xn be stationary associated random variables with one dimensional marginal distribution function F. We study the properties of the classical sign statistic and the Wilcoxon-signed rank statistic for testing for shift in location in the above set up. In the process, we extend the Newman's inequality to functions of bounded variation which are mixtures of absolutely continuous component and discrete component only.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 71 (2005)
    Issue (Month): 2 (February)
    Pages: 131-142

    in new window

    Handle: RePEc:eee:stapro:v:71:y:2005:i:2:p:131-142
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Peligard, Magda & Suresh, Ram, 1995. "Estimation of variance of partial sums of an associated sequence of random variables," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 307-319, April.
    2. Dewan, Isha & Prakasa Rao, B. L. S., 2002. "Central limit theorem for U-statistics of associated random variables," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 9-15, March.
    3. Bagai, Isha & Prakasa Rao, B. L. S., 1991. "Estimation of the survival function for stationary associated processes," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 385-391, November.
    4. Cuadras, C. M., 2002. "On the Covariance between Functions," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 19-27, April.
    5. Isha Dewan & B. Rao, 2003. "Mann-Whitney test for associated sequences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 111-119, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:2:p:131-142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.