IDEAS home Printed from
   My bibliography  Save this article

Perturbation of functional tensors with applications to covariance operators


  • Romain, Yves


In this paper, results on the perturbation theory of symmetric operators are given. They concern the tensor extension of a perturbation problem for operators as studied by Fine (Statistics 18 (1987) 401). We consider functional definitions of the tensor product, sum and difference of operators and we study the eigenelement expansions of their perturbations. We show that the main result may be summarized in a simple form called "a perturbation rule for tensor operators". Finally, we indicate briefly how to apply these properties in a multivariate statistical sampling framework.

Suggested Citation

  • Romain, Yves, 2002. "Perturbation of functional tensors with applications to covariance operators," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 253-264, July.
  • Handle: RePEc:eee:stapro:v:58:y:2002:i:3:p:253-264

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    2. Boudou, Alain & Romain, Yves, 2002. "On spectral and random measures associated to discrete and continuous-time processes," Statistics & Probability Letters, Elsevier, vol. 59(2), pages 145-157, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:58:y:2002:i:3:p:253-264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.