IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v55y2001i4p397-401.html
   My bibliography  Save this article

Integrated squared error estimation of Cauchy parameters

Author

Listed:
  • Besbeas, Panagiotis
  • Morgan, Byron J. T.

Abstract

We show that integrated squared error estimation of the parameters of a Cauchy distribution, based on the empirical characteristic function, is simple, robust and efficient. The k-L estimator of Koutrouvelis (Biometrika 69 (1982) 205) is more difficult to use, less robust and at best only marginally more efficient.

Suggested Citation

  • Besbeas, Panagiotis & Morgan, Byron J. T., 2001. "Integrated squared error estimation of Cauchy parameters," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 397-401, December.
  • Handle: RePEc:eee:stapro:v:55:y:2001:i:4:p:397-401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00153-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junjiro Ogawa, 1960. "Determination of optimum spacings for the estimation of the scale parameter of an exponential distribution based on sample quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 12(2), pages 135-141, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besbeas, Panagiotis & Morgan, Byron J. T., 2004. "Integrated squared error estimation of normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 517-526, January.
    2. Muneya Matsui & Akimichi Takemura, 2005. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 183-199, March.
    3. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    4. Muneya Matsui & Akimichi Takemura, 2005. "Goodness-of-Fit Tests for Symmetric Stable Distributions - Empirical Characteristic Function Approach," CIRJE F-Series CIRJE-F-384, CIRJE, Faculty of Economics, University of Tokyo.
    5. Besbeas, Panagiotis & J.T. Morgan, Byron, 2004. "Efficient and robust estimation for the one-sided stable distribution of index," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 251-257, February.
    6. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    7. Muneya Matsui & Akimichi Takemura, 2003. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," CIRJE F-Series CIRJE-F-226, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:4:p:397-401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.