IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v43y1999i3p243-250.html
   My bibliography  Save this article

Asymptotic normality of nonparametric estimators under [alpha]-mixing condition

Author

Listed:
  • Liebscher, Eckhard

Abstract

In this paper we derive central limit theorems for three types of nonparametric estimators: kernel density estimators, Hermite series estimators and regression estimators. We assume that the sample is a part of a stationary sequence satisfying an [alpha]-mixing property. The proofs are based on a central limit theorem for [alpha]-mixing triangular arrays in the paper by Liebscher [1996, Stochastics and Stochastics Rep. 59, 241-258].

Suggested Citation

  • Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
  • Handle: RePEc:eee:stapro:v:43:y:1999:i:3:p:243-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00264-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Roussas, 1969. "Nonparametric estimation in Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 73-87, December.
    2. E. Liebscher, 1990. "Hermite series estimators for probability densities," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 37(1), pages 321-343, December.
    3. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    4. Tran, Lanh Tat, 1990. "Kernel density estimation under dependence," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 193-201, August.
    5. Bradley, Richard C., 1983. "Asymptotic normality of some kernel-type estimators of probability density," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 295-300, October.
    6. Roussas, George G. & Tran, Lanh T. & Ioannides, D. A., 1992. "Fixed design regression for time series: Asymptotic normality," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 262-291, February.
    7. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    8. Wu, J. S. & Chu, C. K., 1994. "Nonparametric estimation of a regression function with dependent observations," Stochastic Processes and their Applications, Elsevier, vol. 50(1), pages 149-160, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    2. Longla, Martial & Peligrad, Magda & Sang, Hailin, 2015. "On kernel estimators of density for reversible Markov chains," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 149-157.
    3. Jing Wang, 2012. "Modelling time trend via spline confidence band," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 275-301, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    2. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    3. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    4. Liebscher, Eckhard, 1996. "Strong convergence of sums of [alpha]-mixing random variables with applications to density estimation," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 69-80, December.
    5. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    6. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    7. Arif Dowla & Efstathios Paparoditis & Dimitris Politis, 2013. "Local block bootstrap inference for trending time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 733-764, August.
    8. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    9. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    10. Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
    11. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order," CeMMAP working papers 53/16, Institute for Fiscal Studies.
    12. Masry, Elias & Mielniczuk, Jan, 1999. "Local linear regression estimation for time series with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 173-193, August.
    13. Masry, Elias, 2011. "The estimation of the correlation coefficient of bivariate data under dependence: Convergence analysis," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1039-1045, August.
    14. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    16. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    17. Hwai-Chung, Ho, 1996. "On central and non-central limit theorems in density estimation for sequences of long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 63(2), pages 153-174, November.
    18. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    19. Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
    20. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:43:y:1999:i:3:p:243-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.