IDEAS home Printed from
   My bibliography  Save this article

Consistent estimation for the non-normal ultrastructural model


  • Srivastava, Anil K.
  • Shalabh


The present article considers the linear ultrastructural model which encompasses the two popular forms of measurement error models, viz., the functional and structural models. The measurement error variance associated with the explanatory variable is assumed to be known which leads to consistent estimators of parameters. The efficiency properties of the thus obtained estimators of slope parameter, intercept term and the measurement error variance of study variable are derived under non-normal error distributions and the effects of departures from symmetry and peakedness of the error distributions are studied.

Suggested Citation

  • Srivastava, Anil K. & Shalabh, 1997. "Consistent estimation for the non-normal ultrastructural model," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 67-73, May.
  • Handle: RePEc:eee:stapro:v:34:y:1997:i:1:p:67-73

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shalabh & Garg, Gaurav & Misra, Neeraj, 2009. "Use of prior information in the consistent estimation of regression coefficients in measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1498-1520, August.
    2. Shalabh & Garg, Gaurav & Misra, Neeraj, 2007. "Restricted regression estimation in measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1149-1166, October.
    3. Shalabh & Gaurav Garg & Neeraj Misra, 2010. "Consistent estimation of regression coefficients in ultrastructural measurement error model using stochastic prior information," Statistical Papers, Springer, vol. 51(3), pages 717-748, September.
    4. Schneeweiss, H. & Shalabh, H., 2007. "On the estimation of the linear relation when the error variances are known," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1143-1148, October.
    5. Shalabh, 2003. "Consistent estimation of coefficients in measurement error models with replicated observations," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 227-241, August.
    6. Cheng, C.-L. & Shalabh, & Garg, G., 2016. "Goodness of fit in restricted measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 101-116.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:34:y:1997:i:1:p:67-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.