IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v33y1997i2p185-191.html
   My bibliography  Save this article

Accurate rates of density estimators for continuous-time processes

Author

Listed:
  • Blanke, D.
  • Bosq, D.

Abstract

We specify necessary conditions for getting parametric convergence rate of kernel density estimators. For continuous-time processes observed over [0, T], we show that two possible exact rates are (ln T)/T and 1/T, according to the nature of sample paths.

Suggested Citation

  • Blanke, D. & Bosq, D., 1997. "Accurate rates of density estimators for continuous-time processes," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 185-191, April.
  • Handle: RePEc:eee:stapro:v:33:y:1997:i:2:p:185-191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00126-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    2. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    3. Blanke, Delphine & Vial, Céline, 2008. "Assessing the number of mean square derivatives of a Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1852-1869, October.
    4. Sköld, Martin & Hössjer, Ola, 1999. "On the asymptotic variance of the continuous-time kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 97-106, August.
    5. M. Sköld, 2001. "The Asymptotic Variance of the Continuous-Time Kernel Estimator with Applications to Bandwidth Selection," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 99-117, January.
    6. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:33:y:1997:i:2:p:185-191. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.