IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v129y2017icp131-140.html
   My bibliography  Save this article

On the functional and local limit theorems for Markov modulated compound Poisson processes

Author

Listed:
  • Pang, Guodong
  • Zheng, Yi

Abstract

We study a class of Markov-modulated compound Poisson processes whose arrival rates and the compound random variables are both modulated by a stationary finite-state Markov process. The compound random variables are i.i.d. in each state of the Markov process, while having a distribution depending on the state of the Markov process. We prove a functional central limit theorem and local limit theorems under appropriate scalings of the arrival process, compound random variables and underlying Markov process.

Suggested Citation

  • Pang, Guodong & Zheng, Yi, 2017. "On the functional and local limit theorems for Markov modulated compound Poisson processes," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 131-140.
  • Handle: RePEc:eee:stapro:v:129:y:2017:i:c:p:131-140
    DOI: 10.1016/j.spl.2017.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuliano-Antonini, Rita & Szewczak, Zbigniew S., 2013. "An almost sure local limit theorem for Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 573-579.
    2. Xin Zhang, 2008. "On the Ruin Problem in a Markov-Modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 225-238, June.
    3. Asmussen, Søren, 1991. "Ladder heights and the Markov-modulated M/G/1 queue," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 313-326, April.
    4. Hongyuan Lu & Guodong Pang & Michel Mandjes, 2016. "A functional central limit theorem for Markov additive arrival processes and its applications to queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 381-406, December.
    5. D. Anderson & J. Blom & M. Mandjes & H. Thorsdottir & K. Turck, 2016. "A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 153-168, March.
    6. Søren Asmussen & Colm O'cinneide, 2002. "On the Tail of the Waiting Time in a Markov-Modulated M/G/1 Queue," Operations Research, INFORMS, vol. 50(3), pages 559-565, June.
    7. Ward Whitt, 2016. "Heavy-traffic fluid limits for periodic infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 111-143, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    2. Sen, Ankita & Selvaraju, N., 2023. "Diffusion approximation of an infinite-server queue under Markovian environment with rapid switching," Statistics & Probability Letters, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    2. Szewczak, Zbigniew S., 2022. "A. de Moivre theorem revisited," Statistics & Probability Letters, Elsevier, vol. 181(C).
    3. Bashtova, Elena & Shashkin, Alexey, 2022. "Strong Gaussian approximation for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1-18.
    4. Sen, Ankita & Selvaraju, N., 2023. "Diffusion approximation of an infinite-server queue under Markovian environment with rapid switching," Statistics & Probability Letters, Elsevier, vol. 195(C).
    5. Ayane Nakamura & Tuan Phung-Duc, 2023. "A Moment Approach for a Conditional Central Limit Theorem of Infinite-Server Queue: A Case of M/M X / ∞ Queue," Mathematics, MDPI, vol. 11(9), pages 1-20, April.
    6. Kaj, Ingemar & Tahir, Daniah, 2019. "Stochastic equations and limit results for some two-type branching models," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 35-46.
    7. Hossein Abouee-Mehrizi & Opher Baron, 2016. "State-dependent M/G/1 queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 121-148, February.
    8. Michel Mandjes & Birgit Sollie, 2022. "A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1693-1715, September.
    9. D. T. Koops & O. J. Boxma & M. R. H. Mandjes, 2017. "Networks of $$\cdot /G/\infty $$ · / G / ∞ queues with shot-noise-driven arrival intensities," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 301-325, August.
    10. Ioannis Dimitriou, 2022. "Stationary analysis of certain Markov-modulated reflected random walks in the quarter plane," Annals of Operations Research, Springer, vol. 310(2), pages 355-387, March.
    11. Dieter Fiems, 2022. "Retrial queues with generally distributed retrial times," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 189-191, April.
    12. Ehyter Matías Martín-González & Antonio Murillo-Salas & Henry Pantí, 2022. "Gerber-Shiu Function for a Class of Markov-Modulated Lévy Risk Processes with Two-Sided Jumps," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2779-2800, December.
    13. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    14. Pang, Guodong & Zhou, Yuhang, 2018. "Functional limit theorems for a new class of non-stationary shot noise processes," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 505-544.
    15. Hongyuan Lu & Guodong Pang & Michel Mandjes, 2016. "A functional central limit theorem for Markov additive arrival processes and its applications to queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 381-406, December.
    16. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
    17. Yiran Liu & Harsha Honnappa & Samy Tindel & Nung Kwan Yip, 2021. "Infinite server queues in a random fast oscillatory environment," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 145-179, June.
    18. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    19. Jingchao Li & Bihao Su & Zhenghong Wei & Ciyu Nie, 2022. "A Multinomial Approximation Approach for the Finite Time Survival Probability Under the Markov-modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2169-2194, September.
    20. Vijayalakshmi Chetlapalli & K. S. S. Iyer & Himanshu Agrawal, 2020. "Modelling time-dependent aggregate traffic in 5G networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(4), pages 557-575, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:129:y:2017:i:c:p:131-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.