IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v121y2017icp45-50.html
   My bibliography  Save this article

On normal variance–mean mixtures

Author

Listed:
  • Yu, Yaming

Abstract

We study shape properties of normal variance–mean mixtures, in both the univariate and multivariate cases, and determine conditions for unimodality and log-concavity of the density functions. We also interpret such results in practical terms and discuss discrete analogues.

Suggested Citation

  • Yu, Yaming, 2017. "On normal variance–mean mixtures," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 45-50.
  • Handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:45-50
    DOI: 10.1016/j.spl.2016.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    2. repec:hum:wpaper:sfb649dp2005-001 is not listed on IDEAS
    3. Bertin, Emile & Theodorescu, Radu, 1995. "Preserving unimodality by mixing," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 281-288, November.
    4. Sato, Ken-iti, 2001. "Subordination and self-decomposability," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 317-324, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stergios B. Fotopoulos & Venkata K. Jandhyala & Alex Paparas, 2021. "Some Properties of the Multivariate Generalized Hyperbolic Laws," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 187-205, February.
    2. Mattei, Pierre-Alexandre, 2017. "Multiplying a Gaussian matrix by a Gaussian vector," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 67-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    3. J. Hambuckers & C. Heuchenne, 2017. "A robust statistical approach to select adequate error distributions for financial returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 137-161, January.
    4. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    5. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
    6. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2021. "Correlating Lévy processes with self-decomposability: applications to energy markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1253-1280, December.
    7. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    8. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    9. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
    10. Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
    11. Di Nardo, E. & Marena, M. & Semeraro, P., 2020. "On non-linear dependence of multivariate subordinated Lévy processes," Statistics & Probability Letters, Elsevier, vol. 166(C).
    12. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Grothe, Oliver & Nicklas, Stephan, 2013. "Vine constructions of Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 1-15.
    14. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    15. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    16. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    17. Chen, Ying & Härdle, Wolfgang Karl & Spokoiny, Vladimir, 2006. "GHICA: Risk analysis with GH distributions and independent components," SFB 649 Discussion Papers 2006-078, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Beatrice Foroni & Luca Merlo & Lea Petrella, 2024. "Hidden Markov graphical models with state-dependent generalized hyperbolic distributions," Papers 2412.03668, arXiv.org.
    19. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    21. Čίžek, Pavel & Komorád, Karel, 2005. "Implied trinomial trees," SFB 649 Discussion Papers 2005-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:45-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.