IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i7p4392-4443.html
   My bibliography  Save this article

Estimates on the tail probabilities of subordinators and applications to general time fractional equations

Author

Listed:
  • Cho, Soobin
  • Kim, Panki

Abstract

In this paper, we study estimates on tail probabilities of several classes of subordinators under mild assumptions on the tails of their Lévy measures. As an application of that result, we obtain two-sided estimates for fundamental solutions of general homogeneous time fractional equations including those with Dirichlet boundary conditions.

Suggested Citation

  • Cho, Soobin & Kim, Panki, 2020. "Estimates on the tail probabilities of subordinators and applications to general time fractional equations," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4392-4443.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4392-4443
    DOI: 10.1016/j.spa.2020.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919303291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bogdan, Krzysztof & Grzywny, Tomasz & Ryznar, Michał, 2014. "Dirichlet heat kernel for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3612-3650.
    2. Chen, Zhen-Qing, 2017. "Time fractional equations and probabilistic representation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 168-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
    2. Hayashi, Masafumi & Takeuchi, Atsushi & Yamazato, Makoto, 2024. "Space-time boundedness and asymptotic behaviors of the densities of CME-subordinators," Stochastic Processes and their Applications, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Cristofaro, Lorenzo & Mishura, Yuliya, 2024. "A class of processes defined in the white noise space through generalized fractional operators," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
    2. Grzywny, Tomasz & Kwaśnicki, Mateusz, 2018. "Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 1-38.
    3. D’Ovidio, Mirko & Loreti, Paola, 2018. "Solutions of fractional logistic equations by Euler’s numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1081-1092.
    4. Grzywny, Tomasz & Kim, Kyung-Youn & Kim, Panki, 2020. "Estimates of Dirichlet heat kernel for symmetric Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 431-470.
    5. Ascione, Giacomo & Vidotto, Anna, 2025. "Time changed spherical Brownian motions with longitudinal drifts," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
    6. Zhang, Shuaiqi & Chen, Zhen-Qing, 2022. "Fokker–Planck equation for Feynman–Kac transform of anomalous processes," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 300-326.
    7. D’Ovidio, Mirko & Iafrate, Francesco, 2024. "Elastic drifted Brownian motions and non-local boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    8. Leżaj, Łukasz, 2024. "Non-symmetric stable processes: Dirichlet heat kernel, Martin kernel and Yaglom limit," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    9. Mirko D’Ovidio, 2022. "On the Non-Local Boundary Value Problem from the Probabilistic Viewpoint," Mathematics, MDPI, vol. 10(21), pages 1-26, November.
    10. Du, Qiang & Toniazzi, Lorenzo & Zhou, Zhi, 2020. "Stochastic representation of solution to nonlocal-in-time diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2058-2085.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4392-4443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.