IDEAS home Printed from
   My bibliography  Save this article

Large volatility-stabilized markets


  • Shkolnikov, Mykhaylo


We investigate the behavior of systems of interacting diffusion processes, known as volatility-stabilized market models in the mathematical finance literature, when the number of diffusions tends to infinity. We show that, after an appropriate rescaling of the time parameter, the empirical measure of the system converges to the solution of a degenerate parabolic partial differential equation. A stochastic representation of the latter in terms of one-dimensional distributions of a time-changed squared Bessel process allows us to give an explicit description of the limit.

Suggested Citation

  • Shkolnikov, Mykhaylo, 2013. "Large volatility-stabilized markets," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 212-228.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:212-228 DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Adrian Banner & Daniel Fernholz, 2008. "Short-term relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 4(4), pages 445-454, October.
    2. Shkolnikov, Mykhaylo, 2012. "Large systems of diffusions interacting through their ranks," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1730-1747.
    3. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Benjamin Jourdain & Julien Reygner, 2015. "Capital distribution and portfolio performance in the mean-field Atlas model," Annals of Finance, Springer, vol. 11(2), pages 151-198, May.
    2. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:212-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.