IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i9p1330-1356.html

Exit times for a class of piecewise exponential Markov processes with two-sided jumps

Author

Listed:
  • Jacobsen, Martin
  • Jensen, Anders Tolver

Abstract

We consider first passage times for piecewise exponential Markov processes that may be viewed as Ornstein-Uhlenbeck processes driven by compound Poisson processes. We allow for two-sided jumps and as a main result we derive the joint Laplace transform of the first passage time of a lower level and the resulting undershoot when passage happens as a consequence of a downward (negative) jump. The Laplace transform is determined using complex contour integrals and we illustrate how the choice of contours depends in a crucial manner on the particular form of the negative jump part, which is allowed to belong to a dense class of probabilities. We give extensions of the main result to two-sided exit problems where the negative jumps are as before but now it is also required that the positive jumps have a distribution of the same type. Further, extensions are given for the case where the driving Lévy process is the sum of a compound Poisson process and an independent Brownian motion. Examples are used to illustrate the theoretical results and include the numerical evaluation of some concrete exit probabilities. Also, some of the examples show that for specific values of the model parameters it is possible to obtain closed form expressions for the Laplace transform, as is the case when residue calculus may be used for evaluating the relevant contour integrals.

Suggested Citation

  • Jacobsen, Martin & Jensen, Anders Tolver, 2007. "Exit times for a class of piecewise exponential Markov processes with two-sided jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1330-1356, September.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:9:p:1330-1356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00015-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Harrison & Sidney I. Resnick, 1976. "The Stationary Distribution and First Exit Probabilities of a Storage Process with General Release Rule," Mathematics of Operations Research, INFORMS, vol. 1(4), pages 347-358, November.
    2. Alexander Novikov & R. E. Melchers & E. Shinjikashvili & N. Kordzakhia, 2003. "First Passage Time of Filtered Poisson Process with Exponential Shape Function," Research Paper Series 109, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Jacobsen, Martin, 2003. "Martingales and the distribution of the time to ruin," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 29-51, September.
    4. Tsurui, Akira & Osaki, Shunji, 1976. "On a first-passage problem for a cumulative process with exponential decay," Stochastic Processes and their Applications, Elsevier, vol. 4(1), pages 79-88, January.
    5. Patie, Pierre, 2005. "On a martingale associated to generalized Ornstein-Uhlenbeck processes and an application to finance," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 593-607, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyu Song, 2021. "Some Explicit Results on First Exit Times for a Jump Diffusion Process Involving Semimartingale Local Time," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2346-2367, December.
    2. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    3. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    4. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    5. Florin Avram & Danijel Grahovac & Ceren Vardar-Acar, 2019. "The W , Z / ν , δ Paradigm for the First Passage of Strong Markov Processes without Positive Jumps," Risks, MDPI, vol. 7(1), pages 1-15, February.
    6. Yitao Yang & Jingmin He & Zhongqin Gao & Bingbing Wang, 2017. "Exit times for the diffusion risk model with debit interest," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1810-1815, November.
    7. Florin Avram & Jose-Luis Perez-Garmendia, 2019. "A Review of First-Passage Theory for the Segerdahl-Tichy Risk Process and Open Problems," Risks, MDPI, vol. 7(4), pages 1-21, November.
    8. Onno Boxma & Michel Mandjes, 2021. "Shot-noise queueing models," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 121-159, October.
    9. Zhou, Jiang & Wu, Lan & Bai, Yang, 2017. "Occupation times of Lévy-driven Ornstein–Uhlenbeck processes with two-sided exponential jumps and applications," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 80-90.
    10. Moritz Helias & Moritz Deger & Stefan Rotter & Markus Diesmann, 2010. "Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borovkov, Konstantin & Novikov, Alexander, 2008. "On exit times of Lévy-driven Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1517-1525, September.
    2. Zhou, Jiang & Wu, Lan & Bai, Yang, 2017. "Occupation times of Lévy-driven Ornstein–Uhlenbeck processes with two-sided exponential jumps and applications," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 80-90.
    3. Zhao, Yu & Zhang, Liping & Yuan, Sanling, 2018. "The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 248-260.
    4. Patrice Bertail & Stéphan Clémençon, 2006. "Approximate Regenerative-block Bootstrap for Markov Chains : Some Simulation Studies," Working Papers 2006-19, Center for Research in Economics and Statistics.
    5. Yutaka Sakuma & Onno Boxma & Tuan Phung-Duc, 2021. "An M/PH/1 queue with workload-dependent processing speed and vacations," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 373-405, August.
    6. Borovkov, K. & Novikov, A., 2001. "On a piece-wise deterministic Markov process model," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 421-428, July.
    7. Andreas Löpker, 2016. "On the overflow time of a fluid model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 59-92, August.
    8. Alexander Novikov & R. E. Melchers & E. Shinjikashvili & N. Kordzakhia, 2003. "First Passage Time of Filtered Poisson Process with Exponential Shape Function," Research Paper Series 109, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Patrice Bertail & Stéphan Clémençon, 2005. "Regeneration-based Statistics for Harris Recurrent Markov Chains," Working Papers 2005-13, Center for Research in Economics and Statistics.
    10. Czarna, Irmina & Pérez, José-Luis & Rolski, Tomasz & Yamazaki, Kazutoshi, 2019. "Fluctuation theory for level-dependent Lévy risk processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5406-5449.
    11. Patrice Bertail & Stéphan Clémençon, 2004. "Regenerative Block-bootstrap for Markov Chains," Working Papers 2004-47, Center for Research in Economics and Statistics.
    12. Onno Boxma & Mahmut Parlar & David Perry, 2015. "A make-to-stock mountain-type inventory model," Annals of Operations Research, Springer, vol. 231(1), pages 65-77, August.
    13. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
    14. A. Lust & K.-H. Waldmann, 2019. "A general storage model with applications to energy systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 71-97, March.
    15. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    16. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    17. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
    18. Jakubowski, Tomasz, 2007. "The estimates of the mean first exit time from a ball for the [alpha]-stable Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1540-1560, October.
    19. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:9:p:1330-1356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.