IDEAS home Printed from
   My bibliography  Save this article

Delay differential equations driven by Lévy processes: Stationarity and Feller properties


  • Reiß, M.
  • Riedle, M.
  • van Gaans, O.


We consider a stochastic delay differential equation driven by a general Lévy process. Both the drift and the noise term may depend on the past, but only the drift term is assumed to be linear. We show that the segment process is eventually Feller, but in general not eventually strong Feller on the Skorokhod space. The existence of an invariant measure is shown by proving tightness of the segments using semimartingale characteristics and the Krylov-Bogoliubov method. A counterexample shows that the stationary solution in completely general situations may not be unique, but in more specific cases uniqueness is established.

Suggested Citation

  • Reiß, M. & Riedle, M. & van Gaans, O., 2006. "Delay differential equations driven by Lévy processes: Stationarity and Feller properties," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1409-1432, October.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:10:p:1409-1432

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gushchin, Alexander A. & Küchler, Uwe, 2000. "On stationary solutions of delay differential equations driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 195-211, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    2. Xi, Fubao & Yin, George, 2013. "The strong Feller property of switching jump-diffusion processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 761-767.
    3. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2015. "Hypercontractivity for functional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3636-3656.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:10:p:1409-1432. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.