IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i7p1066-1087.html

Extremes of subexponential Lévy driven moving average processes

Author

Listed:
  • Fasen, Vicky

Abstract

In this paper we study the extremal behavior of a stationary continuous-time moving average process for , where f is a deterministic function and L is a Lévy process whose increments, represented by L(1), are subexponential and in the maximum domain of attraction of the Gumbel distribution. We give necessary and sufficient conditions for Y to be a stationary, infinitely divisible process, whose stationary distribution is subexponential, and in this case we calculate its tail behavior. We show that large jumps of the Lévy process in combination with extremes of f cause excesses of Y and thus properly chosen discrete-time points are sufficient for specifying the extremal behavior of the continuous-time process Y. We describe the extremal behavior of Y completely as a weak limit of marked point processes. A complementary result guarantees the convergence of running maxima of Y to the Gumbel distribution.

Suggested Citation

  • Fasen, Vicky, 2006. "Extremes of subexponential Lévy driven moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 116(7), pages 1066-1087, July.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:7:p:1066-1087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00004-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Davis, Richard & Resnick, Sidney, 1988. "Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 41-68, November.
    2. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    3. Braverman, Michael & Samorodnitsky, Gennady, 1995. "Functionals of infinitely divisible stochastic processes with exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 207-231, April.
    4. Gushchin, Alexander A. & Küchler, Uwe, 2000. "On stationary solutions of delay differential equations driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 195-211, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    2. Robert, Christian Y. & Segers, Johan, 2008. "Tails of random sums of a heavy-tailed number of light-tailed terms," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 85-92, August.
    3. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    4. Yang, Haizhong & Sun, Suting, 2013. "Subexponentiality of the product of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2039-2044.
    5. Chen, Yiqing, 2025. "The heavy-tail behavior of the difference of two dependent random variables," Statistics & Probability Letters, Elsevier, vol. 218(C).
    6. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    7. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    8. Chengguo Weng & Yi Zhang & Ken Seng Tan, 2013. "Tail Behavior of Poisson Shot Noise Processes under Heavy-tailed Shocks and Actuarial Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 655-682, September.
    9. Tyran-Kaminska, Marta, 2010. "Convergence to Lévy stable processes under some weak dependence conditions," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1629-1650, August.
    10. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    11. Dawei Lu & Ting Li & Meng Yuan & Xinmei Shen, 2024. "Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-28, September.
    12. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    13. Shen, Xinmei & Lin, Zhengyan, 2008. "Precise large deviations for randomly weighted sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3222-3229, December.
    14. N. Balakrishnan & A. Stepanov, 2014. "On the Use of Bivariate Mellin Transform in Bivariate Random Scaling and Some Applications," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 235-244, March.
    15. Gao, Qingwu & Wang, Yuebao, 2009. "Ruin probability and local ruin probability in the random multi-delayed renewal risk model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 588-596, March.
    16. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    17. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    18. Braverman, Michael, 1997. "Suprema and sojourn times of Lévy processes with exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 265-283, June.
    19. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    20. Weng, Chengguo & Zhang, Yi, 2012. "Characterization of multivariate heavy-tailed distribution families via copula," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 178-186.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:7:p:1066-1087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.