IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v115y2005i5p797-826.html
   My bibliography  Save this article

Super optimal rates for nonparametric density estimation via projection estimators

Author

Listed:
  • Comte, F.
  • Merlevède, F.

Abstract

In this paper, we study the problem of the nonparametric estimation of the marginal density f of a class of continuous time processes. To this aim, we use a projection estimator and deal with the integrated mean square risk. Under Castellana and Leadbetter's condition (Stoch. Proc. Appl. 21 (1986) 179), we show that our estimator reaches a parametric rate of convergence and coincides with the projection of the local time estimator. Discussions about the optimality of this condition are provided. We also deal with sampling schemes and the corresponding discretized processes.

Suggested Citation

  • Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:5:p:797-826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00189-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veretennikov, A. Yu., 1997. "On polynomial mixing bounds for stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 115-127, October.
    2. A. Veretennikov, 1999. "On Castellana–Leadbetter's Condition for Diffusion Density Estimation," Statistical Inference for Stochastic Processes, Springer, vol. 2(1), pages 1-9, January.
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    4. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    5. Yu. Kutoyants, 1998. "Efficient Density Estimation for Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 1(2), pages 131-155, May.
    6. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    7. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    8. D. Blanke & B. Pumo, 2003. "Optimal sampling for density estimation in continuous time," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 1-23, January.
    9. Kutoyants, Yu. A., 1997. "Some problems of nonparametric estimation by observations of ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 311-320, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    2. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1/2004), pages 17-42, January.
    3. Bal'azs Gerencs'er & Mikl'os R'asonyi, 2020. "Invariant measures for multidimensional fractional stochastic volatility models," Papers 2002.04832, arXiv.org, revised Aug 2021.
    4. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    5. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    6. Guillou, Armelle & Merlevède, Florence, 2001. "Estimation of the Asymptotic Variance of Kernel Density Estimators for Continuous Time Processes," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 114-137, October.
    7. Negri, Ilia, 2001. "On efficient estimation of invariant density for ergodic diffusion processes," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 79-85, January.
    8. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    9. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    10. Bosq, Denis & Merlevède, Florence & Peligrad, Magda, 1999. "Asymptotic Normality for Density Kernel Estimators in Discrete and Continuous Time," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 78-95, January.
    11. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.
    12. Turvey, Calum G., 2007. "A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 155-165.
    13. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    14. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    15. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    16. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    17. Stavros Panageas & Nicolae Garleanu, 2008. "Yooung, Old, Conservative and Bold: The implications of finite lives and heterogeneity for asset prices," 2008 Meeting Papers 409, Society for Economic Dynamics.
    18. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    19. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    20. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:5:p:797-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.