Author
Listed:
- Jose, Esther
- Mukherjee, Sayanti
- Swaminathan, Jose
Abstract
Women are often targeted in crimes of sexual violence, trafficking, and domestic abuse, especially in developing countries. There are two types of risk factors for women being victims of such violence. Personal risk factors include attributes or features of the woman’s self or identity, such as how old she is, how educated she is, and whether she is married. There is a second set of factors that we call “regional” risk factors, which include the attributes or characteristics of a region (defined as a state or union territory) such as how electrified it is, how many colleges it has, or how many roads it has. We offer insights on regional risk factors and how they influence rates of crime against women in that region. We also address the challenge of under-reporting and present insights into factors that could reduce under-reporting. We use a suite of advanced machine learning techniques to identify and evaluate the socio-economic and political risk factors for high rates of both reported and adjusted crime against women in a region. We establish our research framework with a case study conducted in India, using data from different states and union territories from 2004–2020. We consider 23 factors, including the financial condition of the state, the ruling political party, access to electricity, access to education, employment rate, and birth rate. Our results show that high access to education, low gender disparity in education, low poverty, and increased household access to electricity are positively correlated with reduced crime against women. We also observe that under-reporting is more often a problem in poorer regions, regions where higher percentages of women are illiterate than men, and regions where household access to electricity is low. While policymakers cannot easily change personal risk factors, these regional risk factors can be addressed explicitly by government agencies, institutions, or leaders.
Suggested Citation
Jose, Esther & Mukherjee, Sayanti & Swaminathan, Jose, 2025.
"Evaluating socioeconomic factors for crime against women in developing countries: A data-centric statistical learning approach,"
Socio-Economic Planning Sciences, Elsevier, vol. 101(C).
Handle:
RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001041
DOI: 10.1016/j.seps.2025.102255
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.