IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v224y2025ics1364032125007610.html
   My bibliography  Save this article

The evolution of low-temperature lithium metal batteries: Materials, mechanisms, and applications

Author

Listed:
  • Yu, Chenxi
  • Wang, Bao
  • Zheng, Shumin

Abstract

With the rapid development of high-power-consumption devices such as portable electronics, electric vehicles, power tools, and renewable energy storage systems (RESS), there is an escalating market demand for energy storage solutions that simultaneously offers high energy density and reliable low-temperature performance. Sub-zero temperatures cause significant capacity degradation, reduced output power, and shortened lifespan in energy storage devices, preventing them from achieving optimal performance. Consequently, enhancing the operational capabilities of energy storage systems under frigid conditions is critically important. Lithium metal, with its ultra-low standard electrode potential (−3.04 V vs. SHE) and exceptionally high theoretical specific capacity (3860 mAh/g), endows lithium metal batteries (LMBs) with exceptional potential for low-temperature operation. In recent years, research on low-temperature applications of LMBs has garnered extensive academic attention and generated substantial publications. This review systematically summarizes research progress in low-temperature LMBs and provides an in-depth analysis of current critical challenges and technical bottlenecks. We focus specifically on performance enhancement strategies, particularly electrolyte optimization, separator coating materials, lithium metal anode stabilization, and 3D conductive frameworks design. Finally, the review prospects future development directions for low-temperature LMBs. Through continuous technological innovation and performance optimization, we anticipate these batteries will achieve large-scale commercialization and catalyze revolutionary breakthroughs in the energy storage sector.

Suggested Citation

  • Yu, Chenxi & Wang, Bao & Zheng, Shumin, 2025. "The evolution of low-temperature lithium metal batteries: Materials, mechanisms, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:rensus:v:224:y:2025:i:c:s1364032125007610
    DOI: 10.1016/j.rser.2025.116088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125007610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.116088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:224:y:2025:i:c:s1364032125007610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.