Author
Listed:
- Lehmusto, Mika
- Khalid, Umair
- Cobben, Max
- Bolbot, Victor
- Elg, Mia
- Hyvärinen, Juhani
- Santasalo-Aarnio, Annukka
- Banda Valdez, Osiris
Abstract
The growing emphasis on sustainability in the maritime industry has sparked significant interest in alternative energy sources, with ambitious goals set to reduce ship emissions. Industry stakeholders have responded with various strategies, such as optimizing existing power plants, improving energy efficiency, and developing innovative power plant designs utilizing alternative fuels. In light of the global pressure to transition to cleaner maritime operations, this study evaluates five sustainable fuel alternatives for icebreakers - LNG, methanol, ammonia, hydrogen, and nuclear energy - in comparison to diesel, with the aim to balance operational power needs, life cycle costs, and increasingly strict environmental regulations. The results indicate that the Small Modular Reactor (SMR) is a highly promising energy source, combining technical feasibility and economic viability, with lifecycle costs 14.9 M€ lower and emissions 80% less than the next best option. A key benefit is its ability to generate electricity profitably, providing additional revenue during off-season periods. Moreover, for the operational profile of icebreakers, methanol and ammonia are emerging as feasible options, enabling a path toward a cleaner future without requiring excessive tank volume. All hydrocarbons can be produced from either fossil-based or renewable carbon sources, offering flexibility for investment in engines that can transition to sustainably produced fuels without requiring engine modifications. This transition can be timed strategically, considering the cost dynamics of sustainable fuels and evolving emissions regulations. This study aims to guide shipowners and designers in making informed decisions by considering operational, functional, economic, environmental, and regulatory factors throughout the ship’s lifecycle.
Suggested Citation
Lehmusto, Mika & Khalid, Umair & Cobben, Max & Bolbot, Victor & Elg, Mia & Hyvärinen, Juhani & Santasalo-Aarnio, Annukka & Banda Valdez, Osiris, 2025.
"Techno-economic analysis of alternative energy sources for icebreakers in the Baltic Sea,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
Handle:
RePEc:eee:rensus:v:224:y:2025:i:c:s1364032125006367
DOI: 10.1016/j.rser.2025.115963
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:224:y:2025:i:c:s1364032125006367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.