IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v223y2025ics1364032125006811.html
   My bibliography  Save this article

Integration of data-driven T-spherical fuzzy mathematical models for evaluation of electric vehicles: Response to electric vehicle market demands

Author

Listed:
  • Tarafdar, Anirban
  • Shaikh, Azharuddin
  • Bhowmik, Dipayan
  • Majumder, Pinki
  • Pamucar, Dragan
  • Simic, Vladimir
  • Bera, Uttam Kumar

Abstract

The rapid growth of the electric vehicle (EV) market necessitates advanced multi-criteria decision-making (MCDM) frameworks capable of integrating diverse quantitative and qualitative factors under uncertainty. Traditional MCDM approaches often struggle to capture the complexity and imprecision inherent in EV evaluations, particularly in dynamic contexts like India. To address this gap, this study proposes the T-Spherical Fuzzy (T-SF) MARCOS and T-SF MOORA methods, which utilize T-Spherical Fuzzy Numbers (T-SFNs) to enhance decision precision. T-SFNs extend conventional fuzzy models by independently incorporating degrees of membership, non-membership, and hesitation, enabling a more granular and realistic modeling of expert judgments. In the methodological construction, numerical criteria (e.g., battery capacity, charging time) are directly incorporated, while qualitative criteria (e.g., safety, comfort) are initially evaluated by four domain experts through linguistic assessments, subsequently transformed into T-SFNs for integrated evaluation and accurate criteria weighting. The developed models are then employed to rank ten EV alternatives across 21 comprehensive technical and consumer-centric criteria. Comparative analysis shows that T-SF MARCOS and T-SF MOORA achieve superior ranking accuracy, with a high mutual Pearson correlation of 0.71, while traditional SF methods like SF-WSM and SF-WASPAS exhibit negative correlations of −0.43 and −0.42, respectively. Sensitivity analyses—covering variations in criteria weights and additional criteria integration—confirm the robustness and stability of the frameworks, with rank reversal rates remaining below 10 % across all scenarios. This study presents a technically resilient, uncertainty-aware evaluation framework, offering strategic insights for advancing consumer-centric EV development.

Suggested Citation

  • Tarafdar, Anirban & Shaikh, Azharuddin & Bhowmik, Dipayan & Majumder, Pinki & Pamucar, Dragan & Simic, Vladimir & Bera, Uttam Kumar, 2025. "Integration of data-driven T-spherical fuzzy mathematical models for evaluation of electric vehicles: Response to electric vehicle market demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:rensus:v:223:y:2025:i:c:s1364032125006811
    DOI: 10.1016/j.rser.2025.116008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125006811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.116008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:223:y:2025:i:c:s1364032125006811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.