IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v218y2025ics1364032125004630.html
   My bibliography  Save this article

Advancements in coupling strategies for urban microclimate and building energy models

Author

Listed:
  • Lu, Ye
  • bibi, Sidra

Abstract

Urban microclimates within metropolitan landscapes exhibit pronounced deviations from their rural counterparts, exerting a substantial influence on building energy performance. The precise representation of these microclimatic variations is paramount for enhancing the fidelity of building energy simulations. This study presents a meticulous and up-to-date review of contemporary advancements in coupling strategies that integrate urban microclimate modeling with building energy models (BEMs). While significant research has been dedicated to these domains in isolation, a critical gap remains in systematically assessing the methodologies employed to interlink them. This review elucidates the principal coupling techniques, categorizing them into unidirectional and bidirectional frameworks, and critically evaluates their relative merits. Findings underscore that bidirectional coupling, despite its computational intensity, yields superior accuracy in capturing the dynamic interplay between urban microclimates and building energy performance. Conversely, unidirectional coupling, though computationally efficient, lacks dynamic reciprocity, thereby introducing potential discrepancies in energy demand estimations. Notably, the incorporation of microclimatic effects through coupling mechanisms consistently results in a discernible reduction in cooling loads and a concomitant increase in heating demands. Moreover, this study highlights prevailing challenges, including computational overhead, data synchronization complexities, and the absence of standardized integration protocols. By providing a structured classification of coupling methodologies, delineating their intrinsic advantages and limitations, and proposing avenues for future research, this review serves as a foundational reference for advancing the seamless integration of urban microclimate dynamics within BEMs.

Suggested Citation

  • Lu, Ye & bibi, Sidra, 2025. "Advancements in coupling strategies for urban microclimate and building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004630
    DOI: 10.1016/j.rser.2025.115790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125004630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.