IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v9y1996i1p1270-1273.html
   My bibliography  Save this article

Improved ashrae model to predict hourly and daily solar radiation components in Botswana, Namibia, and Zimbabwe

Author

Listed:
  • Nijegorodov, N.

Abstract

ASHRAE model empirical coefficients A, B and C are obtained for clear days in Botswana from analysis of different solar radiation components recorded at the University of Botswana, Botswana Technology Centre and some synoptic stations. Investigations show that the direct normal radiation in Botswana usually reveals a specific diurnal profile. For example 30 minutes before sunset, Ibn-radiation could be above 600 W m−2 while at sunset and sunrise (half of the solar disc is under the horizon) it can be as high as 100 Wm−2. Such big values of direct normal solar radiation at sunset and sunrise are not only due to low humidity and turbidity but also due to small values of the relative air mass, m, which can be obtained with the help of a new formula developed by Nijegorodov et al. (1995). By using the ASHRAE empirical coefficients obtained, isotropic and anisotropic sky models and the new formula for the relative air mass a computer program to predict hourly and daily beam, diffuse and ground-reflected radiation on tilted, variously oriented surfaces is developed. This computer program can be used in Botswana, Namibia and Zimbabwe.

Suggested Citation

  • Nijegorodov, N., 1996. "Improved ashrae model to predict hourly and daily solar radiation components in Botswana, Namibia, and Zimbabwe," Renewable Energy, Elsevier, vol. 9(1), pages 1270-1273.
  • Handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1270-1273
    DOI: 10.1016/0960-1481(96)88508-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148196885089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(96)88508-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    2. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1270-1273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.