IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp804-807.html
   My bibliography  Save this article

On the comparison of energy sources: Feasibility of radio frequency and ambient light harvesting

Author

Listed:
  • Korotkevich, Alexander O.
  • Galochkina, Zhanna S.
  • Lavrova, Olga
  • Coutsias, Evangelos A.

Abstract

With growing interest in multi source energy harvesting including integrated microchips we propose a comparison of radio frequency (RF) and solar energy sources in a typical city. Harvesting devices for RF and solar energy will be competing for space of a compact micro or nano device as well as for orientation with respect to the energy source. This is why it is essential to investigate importance of every source of energy and make a decision whether it will be worthwhile to include such harvesters. We considered theoretically possible irradiance by RF signal in different situations, typical for the modern urban environment and compared it with ambient solar energy sources available through the night, including moonlight.

Suggested Citation

  • Korotkevich, Alexander O. & Galochkina, Zhanna S. & Lavrova, Olga & Coutsias, Evangelos A., 2015. "On the comparison of energy sources: Feasibility of radio frequency and ambient light harvesting," Renewable Energy, Elsevier, vol. 81(C), pages 804-807.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:804-807
    DOI: 10.1016/j.renene.2015.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    2. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    3. Miraglia, Marco & Romano, Donato & Camboni, Domenico & Inglese, Francesco & Oddo, Calogero Maria & Stefanini, Cesare, 2023. "Mechatronics-enabled harvesting of polarized wind kinetic energy through novel bio-mimetic swaying devices," Renewable Energy, Elsevier, vol. 211(C), pages 743-760.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:804-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.