IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i3p893-897.html
   My bibliography  Save this article

Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch

Author

Listed:
  • Kirke, B.K.
  • Lazauskas, L.

Abstract

Small Darrieus hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Efficiency improves as size increases, since adequate blade chord Reynolds numbers can be maintained with low solidity. Shaking can be eliminated by using helical blades, or reduced by using multiple blades. Starting torque can be marginally improved by the use of cambered blade profiles but may still be inadequate to overcome drive train friction for self-starting. Variable pitch can generate high starting torque, high efficiency and reduced shaking but active pitch control systems add considerably to complexity and cost, while passive systems must have effective pitch control to achieve higher efficiency than fixed pitch systems.

Suggested Citation

  • Kirke, B.K. & Lazauskas, L., 2011. "Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch," Renewable Energy, Elsevier, vol. 36(3), pages 893-897.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:893-897
    DOI: 10.1016/j.renene.2010.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    2. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    4. Khaoula Ghefiri & Soufiene Bouallègue & Izaskun Garrido & Aitor J. Garrido & Joseph Haggège, 2017. "Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants," Energies, MDPI, vol. 10(7), pages 1-23, June.
    5. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
    6. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    8. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
    9. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
    10. Jain, Palash & Abhishek, A., 2016. "Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching," Renewable Energy, Elsevier, vol. 97(C), pages 97-113.
    11. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    12. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    13. Guo, Jia & Zeng, Pan & Lei, Liping, 2019. "Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments," Energy, Elsevier, vol. 174(C), pages 553-561.
    14. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Eduard Dyachuk & Anders Goude, 2015. "Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model," Energies, MDPI, vol. 8(2), pages 1-20, February.
    16. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    17. Behrouzi, Fatemeh & Nakisa, Mehdi & Maimun, Adi & Ahmed, Yasser M., 2016. "Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1270-1281.
    18. Goude, Anders & Bülow, Fredrik, 2013. "Aerodynamic and electrical evaluation of a VAWT farm control system with passive rectifiers and mutual DC-bus," Renewable Energy, Elsevier, vol. 60(C), pages 284-292.
    19. Davila-Vilchis, J.M. & Mishra, R.S., 2014. "Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator," Energy, Elsevier, vol. 65(C), pages 631-638.
    20. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    21. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    22. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    23. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    24. Yutaka Hara & Ayato Miyashita & Shigeo Yoshida, 2023. "Numerical Simulation of the Effects of Blade–Arm Connection Gap on Vertical–Axis Wind Turbine Performance," Energies, MDPI, vol. 16(19), pages 1-15, October.
    25. Jacob, Joe & Chatterjee, Dhiman, 2019. "Design methodology of hybrid turbine towards better extraction of wind energy," Renewable Energy, Elsevier, vol. 131(C), pages 625-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:3:p:893-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.