IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i12p2767-2775.html
   My bibliography  Save this article

Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm

Author

Listed:
  • McCabe, A.P.
  • Aggidis, G.A.
  • Widden, M.B.

Abstract

This study forms part of research into the optimization of the shape of a wave energy collector to improve energy extraction using genetic algorithms. The wave energy collector geometry uses a parametric description based upon bi-cubic B-spline surfaces, generated from a relatively small number of control points to reduce the dimensionality of the search space. The collector shapes that are optimized have either one or two planes of symmetry. An elementary cost function is used to determine the performance of each candidate solution. The collectors move in two degrees of freedom (surge-and-pitch), and are optimally tuned to absorb the greatest power from a number of incident regular waves, the results being weighted according to a generalized occurrence distribution. High velocities and large collector volumes are penalized. A benchmark collector shape, against which the optimized shapes are compared, is identified. The overall optimization strategy entails performing repeated runs of the algorithm for a fixed number of generations, then restarting the optimization with the run that produces the best result. An appraisal of the results is made, looking at the performance of all the shapes assessed as well as those deemed the best.

Suggested Citation

  • McCabe, A.P. & Aggidis, G.A. & Widden, M.B., 2010. "Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm," Renewable Energy, Elsevier, vol. 35(12), pages 2767-2775.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2767-2775
    DOI: 10.1016/j.renene.2010.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula B. Garcia-Rosa & Giorgio Bacelli & John V. Ringwood, 2015. "Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints," Energies, MDPI, vol. 8(12), pages 1-16, December.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2020. "Hull geometry optimisation of wave energy converters: On the choice of the optimisation algorithm and the geometry definition," Applied Energy, Elsevier, vol. 280(C).
    5. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    6. Silva, Jorge Marques & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "GA-optimized inverse fuzzy model control of OWC wave power plants," Renewable Energy, Elsevier, vol. 204(C), pages 556-568.
    7. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    8. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    9. Garcia-Teruel, Anna & Forehand, David I.M., 2022. "Manufacturability considerations in design optimisation of wave energy converters," Renewable Energy, Elsevier, vol. 187(C), pages 857-873.
    10. Gradowski, M. & Gomes, R.P.F. & Alves, M., 2020. "Hydrodynamic optimisation of an axisymmetric floating Oscillating Water Column type wave energy converter with an enlarged inner tube," Renewable Energy, Elsevier, vol. 162(C), pages 1519-1532.
    11. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
    12. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    13. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    14. Altunkaynak, Abdüsselam & Çelik, Anıl, 2022. "A novel Geno-Nonlinear formula for oscillating water column efficiency estimation," Energy, Elsevier, vol. 241(C).
    15. McCabe, A.P., 2013. "Constrained optimization of the shape of a wave energy collector by genetic algorithm," Renewable Energy, Elsevier, vol. 51(C), pages 274-284.
    16. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    17. López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the power take-off characteristics on the performance of CECO wave energy converter," Energy, Elsevier, vol. 120(C), pages 686-697.
    18. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).
    19. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    20. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    21. Marcos Blanco & Pablo Moreno-Torres & Marcos Lafoz & Dionisio Ramírez, 2015. "Design Parameters Analysis of Point Absorber WEC via an evolutionary-algorithm-based Dimensioning Tool," Energies, MDPI, vol. 8(10), pages 1-31, October.
    22. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    23. Ramadan, A. & Mohamed, M.H. & Abdien, S.M. & Marzouk, S.Y. & El Feky, A. & El Baz, A.R., 2014. "Analytical investigation and experimental validation of an inverted cup float used for wave energy conversion," Energy, Elsevier, vol. 70(C), pages 539-546.
    24. Cotten, A. & Forehand, D.I.M., 2020. "Optimisation of a novel, sloped module, multibody wave energy converter, using an efficient modelling technique," Renewable Energy, Elsevier, vol. 162(C), pages 727-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2767-2775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.