Author
Listed:
- He, Zheng-Hua
- Gao, Jian-Fei
- Ma, Yan-Dong
- Hou, Jing-Feng
- Kong, Ling-Bin
Abstract
In the pursuit of sustainable energy solutions, lithium-ion capacitors are gaining attention for their balanced energy and power density. Transition metal carbides are emerging as promising candidates due to their unique physical and chemical properties. Traditional synthesis methods often involve high-temperature carbon reduction or the application of reducing agents, leading to uncontrollable reactions and the generation of large particle sizes in the resultant materials. To address these challenges, this study employs an organic-inorganic hybrid carbonization, where MoO3 and C2H4N4 are uniformly mixed and then subjected to high-temperature carbonization in Ar. By adjusting carbonization temperature, time, and the amount of C2H4N4 added, different phase Mo-based carbides (Mo2C/C, MoC/C) are synthesized. Lithium-ion half-cell tests indicate that both materials have similar specific capacities and rate capabilities. Ex-situ XRD characterization show no phase change in Mo2C/C or MoC/C during Li+ insertion/extraction processes. Mo2C/C//AC and MoC/C//AC devices were constructed, which provided energy densities of 36.33 and 51.54 W h kg−1 at power density of 150 W kg−1, and 10.67 and 13.67 W h kg−1 at power density of 2.4 kW kg−1, respectively. This successful synthesis of diverse Mo-based carbides provides new material options for enhancing LICs performance, contributing to the development of efficient energy storage systems.
Suggested Citation
He, Zheng-Hua & Gao, Jian-Fei & Ma, Yan-Dong & Hou, Jing-Feng & Kong, Ling-Bin, 2025.
"Continuous phase modulation of molybdenum carbide nanomaterials toward enhanced Li+ storage performances,"
Renewable Energy, Elsevier, vol. 252(C).
Handle:
RePEc:eee:renene:v:252:y:2025:i:c:s0960148125012182
DOI: 10.1016/j.renene.2025.123556
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:252:y:2025:i:c:s0960148125012182. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.