IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v251y2025ics0960148125010961.html
   My bibliography  Save this article

Numerical study on a novel backward bent duct buoy wave energy converter with ‘ducktail’ deflector

Author

Listed:
  • Yang, Huanbin
  • Zhang, Yongliang

Abstract

On the basis of the backward bent duct buoy (BBDB) wave energy converter (WEC), this paper proposes a novel BBDB WEC with a ‘ducktail’ deflector, aiming to further improve capture width ratio (CWR), expand efficient working range, and increase annual power generation. For developing the new device, a 32.5 m-wide numerical wave channel is established and validated. The validated numerical model is used to explore the performance of the 6.5 m-wide full-scale new device, especially the influence of ‘ducktail’ deflector's geometric parameters on the CWR and frequency response bandwidth of the new device. The optimal deflector width, length, inclination angle, as well as the horizontal and vertical distances between the deflector and the BBDB are obtained. The results reveal that, compared with the original BBDB WEC without deflector, CWR of the optimized new device with a deflector increases by 18.5 % under the typical wave condition of the planned deployment site (wave period 4.25s, wave height 1 m), and the wave period range with CWR higher than 1.0 is expanded by 100 % (wave height 1 m). Also, the mechanisms underlying CWR improvement and efficient working range expansion by using the ‘ducktail’ deflector under various waves are revealed from different perspectives.

Suggested Citation

  • Yang, Huanbin & Zhang, Yongliang, 2025. "Numerical study on a novel backward bent duct buoy wave energy converter with ‘ducktail’ deflector," Renewable Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:renene:v:251:y:2025:i:c:s0960148125010961
    DOI: 10.1016/j.renene.2025.123434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125010961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:251:y:2025:i:c:s0960148125010961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.