IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v251y2025ics0960148125010699.html
   My bibliography  Save this article

A built-in charging electret rotational energy harvester for kinetic energy at ultra-low frequency

Author

Listed:
  • Xu, Weihan
  • Gu, Shanghao
  • Luo, Anxin
  • Tao, Kai
  • Wang, Fei

Abstract

In harsh environments, extreme temperature or humidity may lead to the decay in the surface potential of electrets in open structures. When electret materials in energy harvesters need to be charged to maintain polarization, disassembling harvesters or separating electret films from harvesters is generally an unavoidable procedure, which complicates the charging process and increases maintenance costs. At present, there is no ideal built-in charging method for electret materials in non-resonant structures that can balance low cost, safety, and simple operation. Herein, we propose a built-in charging electret rotational energy harvester (BIC-EREH), which can achieve the contact charging of the fluorinated ethylene propylene (FEP) film using a gap-adjustable platform and interdigital electrodes inside the harvester. After charging, the surface potential of the FEP film can reach over −1200 V. The interdigital electrodes in the BIC-EREH are not only used to recharge the FEP film but also serve as a component of an electret transducer to participate in electrical energy conversion. Based on a pawl-ratchet clutch driver, the harvester can output uninterruptedly even under ultra-low frequency excitation. Under one excitation with a velocity of 200 mm/s, the harvester can continuously output for about 23 s with a peak power of 98.2 μW, generating electric energy of about 0.4 mJ. Over a broad bandwidth (0.1–2 Hz), the harvester still has a stable output power. Furthermore, the BIC-EREH has high stability in a high humidity environment and the attenuated output performance can be perfectly restored with an average output power of 85.4 μW after built-in charging. Finally, the harvester is successfully applied as the power supply to drive a wireless sensor node. The study has considerable significance for sustainable power supply of electret energy harvesters in wireless sensor nodes.

Suggested Citation

  • Xu, Weihan & Gu, Shanghao & Luo, Anxin & Tao, Kai & Wang, Fei, 2025. "A built-in charging electret rotational energy harvester for kinetic energy at ultra-low frequency," Renewable Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:renene:v:251:y:2025:i:c:s0960148125010699
    DOI: 10.1016/j.renene.2025.123407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125010699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:251:y:2025:i:c:s0960148125010699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.