IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125008274.html

Optimization of fuel cell shutdown purge strategy based on machine learning: Mechanism analysis and experimental verification

Author

Listed:
  • Shi, Lei
  • Du, Chang
  • Zhou, Julong
  • Yi, Yahui
  • Li, Ruitao
  • Liu, Ze
  • Su, Jianbin
  • Qian, Liqin
  • Ma, Tiancai
  • Tang, Xingwang

Abstract

Shutdown purging can significantly enhance the cold start success rate of fuel cells while mitigating mechanical degradation. This study first identifies that the temperature, relative pressure, relative humidity, and flow rate of the purge gas, within the ranges of 333.15–353.15 K, 20–90 %, 20–90 %, and 0.1–2 Q, respectively, have a notable impact on the purging effectiveness. Subsequently, the PSO-SVR-NSGA-II algorithm is employed to optimize these variables, yielding optimal purging conditions of 333.17 K, 20.013 %, 20.027 %, and 1.0355 Q for temperature, relative pressure, relative humidity, and purge flow rate, respectively. Finally, purging experiments demonstrate that under the same purging duration, the optimized conditions increase the HFR value by 0.79 mΩ, confirming the effectiveness of the optimization strategy. This study provides a new reference for the development of shutdown purging optimization strategies for fuel cells.

Suggested Citation

  • Shi, Lei & Du, Chang & Zhou, Julong & Yi, Yahui & Li, Ruitao & Liu, Ze & Su, Jianbin & Qian, Liqin & Ma, Tiancai & Tang, Xingwang, 2025. "Optimization of fuel cell shutdown purge strategy based on machine learning: Mechanism analysis and experimental verification," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008274
    DOI: 10.1016/j.renene.2025.123165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125008274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    2. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    3. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    4. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Haisong & Wang, Lei & Xie, Lei & Su, Hongye & Lu, Jianshan & Liu, Zhiyang, 2024. "Freeze start of proton exchange membrane fuel cell systems with closed-loop purging and improved voltage consistency," Applied Energy, Elsevier, vol. 374(C).
    2. Ma, Tiancai & Du, Chang & Li, Ruitao & Tang, Xingwang & Su, Jianbin & Qian, Liqin & Shi, Lei, 2025. "Study on the redistribution mechanism and secondary purge strategy of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 378(PA).
    3. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
    4. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    5. Zhao, Jing & Zhou, Caiting & Chen, Yu & Cheng, Xinxuan & Han, Jinchi & Gan, Lang & Chen, Kang & Jian, Qifei & Zhao, Bin, 2025. "Visualization study on the effect of pulsating flow on the two-phase dynamic behavior of proton exchange membrane fuel cells in dead-ended anode mode," Energy, Elsevier, vol. 330(C).
    6. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    7. Lu, Chihua & Li, Chenyu & Liu, Zhien & Li, Yongchao & Zhou, Hui & Zheng, Hao, 2025. "A review on applications of optical visualization technologies for water management in proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    8. Yao, Naiyuan & Lin, Weikang & Shi, Lei & Li, Ruitao & Qi, Jinxuan & Zhou, Julong & Yang, Yanbo & Ma, Tiancai, 2025. "Experimental study on the operating state of high-power vehicular fuel cell system hydrogen supply subsystem with an in-situ ultrasonic-based gas component monitoring equipment," Applied Energy, Elsevier, vol. 388(C).
    9. Ruifeng Guo & Dongfang Chen & Yuehua Li & Wenlong Wu & Song Hu & Xiaoming Xu, 2023. "Anode Nitrogen Concentration Estimation Based on Voltage Variation Characteristics for Proton Exchange Membrane Fuel Cell Stacks," Energies, MDPI, vol. 16(5), pages 1-16, February.
    10. Lei, Gang & Zheng, Hualin & Zhang, Caizhi & Chen, Huicui & Chin, Cheng Siong & Xu, Xinhai, 2024. "Analyzing and modeling of CO purging for high-temperature proton exchange membrane fuel cells," Energy, Elsevier, vol. 302(C).
    11. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    12. Song, Yajie & Wang, Chen & Wang, Lei & Wang, Xinli & Jia, Lei, 2025. "Design criterion of critical mode ejector for PEMFC hydrogen supply and recycle system," Applied Energy, Elsevier, vol. 377(PB).
    13. Liu, Shihua & Li, Xiaoyang & Pang, Linjia & Geng, Tie & Guo, Yonggang & Jiang, Lin & Kang, Kejia & Wang, Xinchao & Liu, Zongyao, 2022. "Study on the effect of purging time on the performance of PEMFC with dead-ended anode under gravity," Renewable Energy, Elsevier, vol. 200(C), pages 1141-1151.
    14. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    15. Yueming Liang & Changqing Du, 2025. "Study on Purge Strategy of Hydrogen Supply System with Dual Ejectors for Fuel Cells," Energies, MDPI, vol. 18(9), pages 1-16, April.
    16. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    17. Yu, Zhongshuai & Liu, Fang & Li, Chengzhang, 2023. "Numerical study on effects of hydrogen ejector on PEMFC performances," Energy, Elsevier, vol. 285(C).
    18. Christopher L. Gardner & Paran J. Sarma & Erik Kjeang, 2022. "Accumulation of Inert Impurities in a Polymer Electrolyte Fuel Cell System with Anode Recirculation and Periodic Purge: A Simple Analytical Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    19. Chen, Xin & Zhang, Ying & Xu, Sheng & Dong, Fei, 2023. "Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 333(C).
    20. Chen, Wei & He, Weibiao & Li, Yan & Zhu, Guohui & Zuo, Qingsong & Shen, Zhuang & Li, Jianxing, 2025. "Fish scale bionic flow field design and performance analysis of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 334(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.