Author
Listed:
- Driss, Slah
- El Hadi Attia, Mohammed
- Cuce, Erdem
- Driss, Zied
- Abdel-Aziz, Moataz M.
Abstract
This study investigates the influence of different collector geometries on the thermal and fluid dynamic performance of aero-thermal panels. Several configurations were analyzed, including single, two, five, and ten-panel systems, with a focus on temperature distribution, velocity fields, static pressure, turbulent kinetic energy, dissipation rate, and turbulent viscosity. Temperature profiles revealed that maximum temperatures were consistent across all geometries, reaching 328 K, but were distributed differently depending on the collector layout. The velocity distribution was found to be relatively uniform, with maximum velocities observed within the collectors, particularly in multi-panel systems. Static pressure showed uniformity across all configurations, with slight variations around the exhaust fan. Turbulent kinetic energy and dissipation rates were higher in systems with more collectors, indicating increased turbulence and energy dissipation due to larger surface areas and more complex flow patterns. Turbulent viscosity remained consistent across geometries, suggesting that the fundamental fluid dynamics in the collector air channel were not significantly altered by the number or shape of the collectors. Overall, the study highlights how varying the number and geometry of collectors impacts heat retention, fluid dynamics, and overall system performance, offering insights into the optimization of such systems for enhanced thermal efficiency.
Suggested Citation
Driss, Slah & El Hadi Attia, Mohammed & Cuce, Erdem & Driss, Zied & Abdel-Aziz, Moataz M., 2025.
"Comparative analysis of geometrical configurations in aero-thermal panel systems,"
Renewable Energy, Elsevier, vol. 248(C).
Handle:
RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008110
DOI: 10.1016/j.renene.2025.123149
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.