IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007669.html

Multi-time scale cooperative operation optimization of virtual power plant and virtual hydrogen plant under stepped carbon trading mechanism

Author

Listed:
  • Du, Yida
  • Zhou, Xiaotong
  • Xu, Tiantian
  • Tan, Zhongfu

Abstract

To adapt to the energy development situation and address the two challenges of multi-time scale changes and multi-entity games after the virtual power plant (VPP) coupled with hydrogen energy, this paper innovatively designs a cooperative operation mode between the VPP and the virtual hydrogen plant (VHP). It also constructs a multi-time scale operation optimization and bargaining model of the two, applies the alternating direction method of multipliers to solve the problem, and simulates the case. The following conclusions are obtained: 1) The synergistic operation of VPP and VHP has been demonstrated to yield substantial economic advantages. 2) The symbiotic operation of VPP and VHP has the potential to yield enhanced environmental benefits. 3) The collaborative operation of VPP and VHP exerts a negligible influence on users and does not modify their energy consumption patterns. 4) The ADMM algorithm can facilitate the efficient resolution of two-stage negotiation problems while ensuring the confidentiality of subjects in VPP and VHP. The paper also provides recommendations to VPP and VHP operators, market regulators, and technology developers, as well as identifies future research directions.

Suggested Citation

  • Du, Yida & Zhou, Xiaotong & Xu, Tiantian & Tan, Zhongfu, 2025. "Multi-time scale cooperative operation optimization of virtual power plant and virtual hydrogen plant under stepped carbon trading mechanism," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007669
    DOI: 10.1016/j.renene.2025.123104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Li, Qiang & Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Li, Jiajia & Zhou, Guowen & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2024. "Multi-time scale scheduling for virtual power plants: Integrating the flexibility of power generation and multi-user loads while considering the capacity degradation of energy storage systems," Applied Energy, Elsevier, vol. 362(C).
    4. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    5. Ju, Liwei & Lv, ShuoShuo & Li, Yanbin & Li, Yun & Qi, Xin & Li, Gen & Zhang, Feng, 2025. "Two-stage scheduling optimization model and benefit allocation strategy for virtual power plant clusters aggregated by multidimensional information indicators," Renewable Energy, Elsevier, vol. 240(C).
    6. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    7. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    8. Yu, Junqi & Liu, Qite & Zhao, Anjun & Chen, Shiyu & Gao, Zhikun & Wang, Fu & Zhang, Rui, 2021. "A distributed optimization algorithm for the dynamic hydraulic balance of chilled water pipe network in air-conditioning system," Energy, Elsevier, vol. 223(C).
    9. Wen, Jiaxing & Jia, Rong & Cao, Ge & Guo, Yi & Jiao, Yang & Li, Wei & Li, Peihang, 2025. "Robust economic scheduling model for virtual power plant considering electrolysis of molten carbonate and dynamic compensation mechanism," Energy, Elsevier, vol. 317(C).
    10. Xu, Biao & Luan, Wenpeng & Yang, Jing & Zhao, Bochao & Long, Chao & Ai, Qian & Xiang, Jiani, 2024. "Integrated three-stage decentralized scheduling for virtual power plants: A model-assisted multi-agent reinforcement learning method," Applied Energy, Elsevier, vol. 376(PA).
    11. Shui, Jijun & Peng, Daogang & Zeng, Hui & Song, Yankan & Yu, Zhitong & Yuan, Xinran & Shen, Chen, 2024. "Optimal scheduling of multiple entities in virtual power plant based on the master-slave game," Applied Energy, Elsevier, vol. 376(PB).
    12. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    13. Bahnamiri, Fazele Karimian & Khalili, Masoud & Pakzad, Pouria & Mehrpooya, Mehdi, 2022. "Techno-economic assessment of a novel power-to-liquid system for synthesis of formic acid and ammonia, based on CO2 electroreduction and alkaline water electrolysis cells," Renewable Energy, Elsevier, vol. 187(C), pages 1224-1240.
    14. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    15. Liu, Wei & Li, Zhuangzhuang & Xing, Xinran & Chen, Xi & Wang, Yufei & Wang, Xuechun, 2025. "Non-cooperative game optimization for virtual power plants considering carbon trading market," Energy, Elsevier, vol. 317(C).
    16. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    17. Wang, Qiujie & Leng, Zihao & Tan, Hong & Mohamed, Mohamed A. & Jin, Tao, 2024. "Optimal scheduling of virtual power plants with reversible solid oxide cells in the electricity market," Renewable Energy, Elsevier, vol. 237(PC).
    18. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    19. Dong, Zeyuan & Zhang, Zhao & Huang, Minghui & Yang, Shaorong & Zhu, Jun & Zhang, Meng & Chen, Dongjiu, 2024. "Research on day-ahead optimal dispatching of virtual power plants considering the coordinated operation of diverse flexible loads and new energy," Energy, Elsevier, vol. 297(C).
    20. Nadimi, Reza & Goto, Mika, 2025. "Uncertainty reduction in power forecasting of virtual power plant: From day-ahead to balancing markets," Renewable Energy, Elsevier, vol. 238(C).
    21. Azad, AmirHossein & Shateri, Hossein, 2023. "Design and optimization of an entirely hybrid renewable energy system (WT/PV/BW/HS/TES/EVPL) to supply electrical and thermal loads with considering uncertainties in generation and consumption," Applied Energy, Elsevier, vol. 336(C).
    22. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    23. Salomone, Fabio & Marocco, Paolo & Ferrario, Daniele & Lanzini, Andrea & Fino, Debora & Bensaid, Samir & Santarelli, Massimo, 2023. "Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator," Applied Energy, Elsevier, vol. 343(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    2. Cai, Pengcheng & Wen, Chuanbo & Cao, Baosen & Qiao, Jinpeng, 2025. "A Wasserstein metric distributionally robust chance-constrained peer aggregation energy sharing mechanism for hydrogen-based microgrids considering low-carbon drivers," Energy, Elsevier, vol. 325(C).
    3. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    4. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    5. Guo, Xiaopeng & Wang, Liyi & Ren, Dongfang, 2025. "Optimal scheduling model for virtual power plant combining carbon trading and green certificate trading," Energy, Elsevier, vol. 318(C).
    6. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao & Ai, Qian, 2025. "A multi-timescale blockchain-based virtual power plant trading framework for building integrated photovoltaic prosumers," Applied Energy, Elsevier, vol. 398(C).
    7. Wang, Jindian & Zhang, Zhonglian & Tao, Changwang & Wang, Zhaojun & Zheng, Xinze & Zhang, Kaitong & Zhang, Jingyu, 2025. "Optimized multi-stage configuration of an improved carbon-neutral energy system through hybrid excess energy utilization and carbon transfer," Energy, Elsevier, vol. 335(C).
    8. Zhang, Jinliang & Liu, Ziyi, 2024. "Low carbon economic scheduling model for a park integrated energy system considering integrated demand response, ladder-type carbon trading and fine utilization of hydrogen," Energy, Elsevier, vol. 290(C).
    9. Ma, Miaomiao & Long, Zijuan & Liu, Xiangjie & Lee, Kwang Y., 2025. "Distributionally robust optimization of electric–thermal–hydrogen integrated energy system considering source–load uncertainty," Energy, Elsevier, vol. 316(C).
    10. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    11. Du, Yida & Li, Xiangguang & Liang, Yan & Tan, Zhongfu, 2024. "Two-stage multi-objective distributionally robust optimization of the electricity-hydrogen coupling system under multiple markets," Energy, Elsevier, vol. 303(C).
    12. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    13. Yun Chen & Yunhao Zhao & Xinghao Zhang & Ying Wang & Rongyao Mi & Junxiao Song & Zhiguo Hao & Chuanbo Xu, 2025. "A Two-Stage Robust Optimization Strategy for Long-Term Energy Storage and Cascaded Utilization of Cold and Heat Energy in Peer-to-Peer Electricity Energy Trading," Energies, MDPI, vol. 18(2), pages 1-26, January.
    14. Duan, Jiandong & Tian, Qinxing & Liu, Fan & Xia, Yerui & Gao, Qi, 2024. "Optimal scheduling strategy with integrated demand response based on stepped incentive mechanism for integrated electricity-gas energy system," Energy, Elsevier, vol. 313(C).
    15. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    16. Qi, Xin & Ju, Liwei & Yang, Shenbo & Gan, Wei & Li, Gen & Bai, Xiping, 2025. "A bi-level peer-to-peer interactive trading optimization model and distributed solution algorithm for rural distributed energy system group based on Stackelberg-Nash game strategy," Energy, Elsevier, vol. 318(C).
    17. Armghan, Hammad & Xu, Yinliang & Bai, Xiang & Ali, Naghmash & Chang, Xinyue & Xue, Yixun, 2024. "A tri-level control framework for carbon-aware multi-energy microgrid cluster considering shared hydrogen energy storage," Applied Energy, Elsevier, vol. 373(C).
    18. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    19. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    20. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.