IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007232.html

Thermal characteristics evaluation of floating photovoltaic modules based on an improved dynamic coupled thermal-electrical model

Author

Listed:
  • Wu, Runze
  • Ma, Chao
  • Liu, Zhao
  • Deng, Zexing
  • Zhang, Ziying

Abstract

In contrast to the prevailing emphasis on quantitative analyses and isolated numerical models in floating photovoltaic (FPV) thermal research, this study advances a dynamic thermal-electrical coupling model that integrates physical field interactions, filling the underdeveloped application of coupled field modeling in FPV thermal performance analysis. The model accounts for variations in heat dissipation performance across different FPV layout configurations on water surfaces, extending the thermal modeling framework and providing a comprehensive characterization of heat transfer mechanisms in waters environments. Validation against field data shows strong agreement, with module temperature root mean square error (RMSE) ranging from 0.637 °C to 2.256 °C and power RMSE between 3.810 W and 6.538 W, demonstrating high prediction accuracy with seasonal differences. Additionally, based on the model, this study systematically evaluates the differences in thermal-electrical characteristics across various layout configurations and quantifies the impact of waters environmental factors. The results indicate that FPV with water contact (FPV-W) exhibits the lowest external thermal resistance, leading to an 8.8 % efficiency increase compared to FPV without water contact (2°< θ <90°). Environmental sensitivity highlights that the thermal resistance of the FPV-W is dominated by wind speed convection enhancement and water temperature conductive gradient, while the module efficiency is mainly modulated by water temperature and irradiance.

Suggested Citation

  • Wu, Runze & Ma, Chao & Liu, Zhao & Deng, Zexing & Zhang, Ziying, 2025. "Thermal characteristics evaluation of floating photovoltaic modules based on an improved dynamic coupled thermal-electrical model," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007232
    DOI: 10.1016/j.renene.2025.123061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    2. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    3. Elminshawy, Nabil A.S. & Osama, Amr & Gagliano, Antonio & Oterkus, Erkan & Tina, Giuseppe Marco, 2024. "A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus," Energy, Elsevier, vol. 303(C).
    4. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants," Applied Energy, Elsevier, vol. 281(C).
    5. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    6. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Analysis of water environment on the performances of floating photovoltaic plants," Renewable Energy, Elsevier, vol. 175(C), pages 281-295.
    8. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    9. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    10. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    11. Elminshawy, Nabil A.S. & Osama, Amr & Saif, Amany M. & Tina, Giuseppe Marco, 2022. "Thermo-electrical performance assessment of a partially submerged floating photovoltaic system," Energy, Elsevier, vol. 246(C).
    12. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    13. Liang, Yanan & Kleijn, René & van der Voet, Ester, 2023. "Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario," Applied Energy, Elsevier, vol. 346(C).
    14. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oreoluwa Lawale & Simon P. Philbin & Sahand Hosouli, 2025. "Modelling, Simulation and Performance Analysis of Floating Photovoltaic Systems—A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 18(19), pages 1-47, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanka Vasuki, Sathya & Levell, Jack & Santbergen, Rudi & Isabella, Olindo, 2025. "A technical review on the energy yield estimation of offshore floating photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    2. Wei, Yujia & Khojasteh, Danial & Windt, Christian & Huang, Luofeng, 2025. "An interdisciplinary literature review of floating solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    3. Tina, Giuseppe Marco & Osama, Amr & Mannino, Gaetano & Gagliano, Antonio & Cucuzza, Alessio Vincenzo & Bizzarri, Fabrizio, 2025. "Thermal comparison of floating bifacial and monofacial photovoltaic modules considering two laying configurations," Applied Energy, Elsevier, vol. 389(C).
    4. Oreoluwa Lawale & Simon P. Philbin & Sahand Hosouli, 2025. "Modelling, Simulation and Performance Analysis of Floating Photovoltaic Systems—A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 18(19), pages 1-47, October.
    5. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    6. Lv, Song & Lu, Mengying & Liu, Wenzhuo & Li, Xianglin & Lv, Wenhao & Liu, Zhe & Dong, Xuanchen & Lu, Tonghui & Yang, Bowen, 2025. "Recent advances in longitudinal spatial area marine photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    7. Sunny, Mahmood Reaz & Kabir, Md Ahsan & Sarker, Md Shakowat Zaman & Aghaloo, Kamaleddin & Ali, Tausif, 2024. "Feasibility study of floating solar photovoltaic systems using techno-economic assessment and multi-criteria decision-making method: A case study of Bangladesh," Energy, Elsevier, vol. 310(C).
    8. Jin, Hui & Kong, Xiangyu & Wang, Chunjie & Zhang, Delong & Yao, Ye, 2025. "A methodology for simulation of power generation characteristics and enhancement of MPPT performance of offshore floating photovoltaic arrays," Applied Energy, Elsevier, vol. 393(C).
    9. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    12. Xu, Lijie & Ji, Jie & Yuan, Chengqing & Cai, Jingyong & Dai, Leyang, 2023. "Electrical and thermal performance of multidimensional semi-transparent CdTe PV window on offshore passenger ships in moored and sailing condition," Applied Energy, Elsevier, vol. 349(C).
    13. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    14. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    15. Valentina González Becerra & Patricio Valdivia-Lefort & Rodrigo Barraza & Jesús García García, 2024. "Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory," Energies, MDPI, vol. 17(23), pages 1-21, November.
    16. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    17. Cáceres González, Rodrigo & Sarmiento-Laurel, Cristóbal & Alcayaga, Hernán & Díaz, Andrés J. & Pizarro, Alonso & Crespo Fuentes, Juan & Moya Caro, Alicia & Vásquez Páez, Camila & Bustos Olavarría, Fab, 2025. "Exploring climate-driven performance of floating photovoltaic systems: Energy production enhancement and evaporation reduction," Applied Energy, Elsevier, vol. 386(C).
    18. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    19. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Cao, Sunliang & You, Fengqi, 2024. "Experimental study and techno-enviro-economic analysis of pavement-integrated photovoltaic/thermal applications in different cities considering the ground influence," Energy, Elsevier, vol. 306(C).
    20. Kumar, Nitin & Pachauri, Rupendra Kumar & Kuchhal, Piyush & Nkenyereye, Lewis, 2025. "Floating photovoltaic system based electrical power generation study in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.