IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125006238.html
   My bibliography  Save this article

A dynamic drying process: Mathematical modeling and energy consumption optimization of alfalfa bales using hot air drying

Author

Listed:
  • Gao, Xinyu
  • Xuan, Chuanzhong
  • Tang, Zhaohui
  • Hong, Baodi
  • Ma, Yanhua
  • Qian, Shanzhu

Abstract

The objective of this experiment is to propose an innovative method for the dynamic drying of alfalfa bales in combination with a solar-assisted air source heat pump system, aiming to achieve a more efficient and energy-saving drying process while preventing the formation of mold and deterioration of the bales, thus reducing nutrient losses. However, conventional drying methods are often weather-dependent and time-consuming. To address these challenges, this study proposes a dynamic drying of alfalfa bales on chain layer movement drying bed with solar-assisted air source heat pump (SASHP) system. Kinetic modeling, optimization, and energy analysis of the alfalfa bales are performed, the improved Page model is the most effective for predicting the drying kinetics of alfalfa bales. The process parameters were optimized using response surface methodology, which included three drying factors and two response variables. The optimal process parameters for dynamic drying alfalfa bales were a drying temperature of 57–59 °C, a drying velocity of 5–6 m/s, and a bale density of 94–100 kg/m3. Under these conditions, the system achieved a specific moisture extraction ratio of the system is 27.3–27.5 g/kWh, and a dehumidification capacity per unit time is 134–135 g/h. Furthermore, In order to evaluate the performance of the SASHP drying system under the optimal combination of process parameters for the dynamic drying of alfalfa bales, the BP-DryNet model is constructed, and BP neural networks are utilized to predict the energy consumption under this process parameters. The BP-DryNet model adopted a multilayer structure and is designed to predict the moisture content, the drying time, and the energy consumption of the entire drying process during the dynamic drying of alfalfa bales. The results show that the BP-DryNet model performs well in predicting the drying behavior, with coefficients of determination (R2) of 0.893, 0.926 and 0.946. The innovative aspect of this study is the dynamic drying method combined with a solar-assisted air source heat pump, which presents one of the energy-efficient, economical, and effective processes for drying alfalfa bales. This approach provides a new solution for sustainable agriculture and promotes the energy efficiency and cost-effectiveness of the alfalfa bales drying process, while also providing a robust theoretical basis for the practical engineering application of solar heat pump drying in the alfalfa bales process.

Suggested Citation

  • Gao, Xinyu & Xuan, Chuanzhong & Tang, Zhaohui & Hong, Baodi & Ma, Yanhua & Qian, Shanzhu, 2025. "A dynamic drying process: Mathematical modeling and energy consumption optimization of alfalfa bales using hot air drying," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125006238
    DOI: 10.1016/j.renene.2025.122961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125006238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Joo, Younghwan & Chang, Sooyoung & Kim, Sung-il & Oh, Sanghyun, 2024. "Effect of drying kinetics model on energy efficiency of drying systems," Energy, Elsevier, vol. 291(C).
    2. Gopinathan, K.K. & Soler, Alfonso, 1992. "A sunshine dependent global insolation model for latitudes between 60°N and 70°N," Renewable Energy, Elsevier, vol. 2(4), pages 401-404.
    3. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    4. Daghigh, Ronak & Ruslan, Mohd Hafidz & Sulaiman, Mohamad Yusof & Sopian, Kamaruzzaman, 2010. "Review of solar assisted heat pump drying systems for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2564-2579, December.
    5. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
    6. Zhang, L.Z. & Jiang, L. & Xu, Z.C. & Zhang, X.J. & Fan, Y.B. & Adnouni, M. & Zhang, C.B., 2022. "Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology," Renewable Energy, Elsevier, vol. 198(C), pages 1267-1278.
    7. Prakash, Om & Laguri, Vinod & Pandey, Anukul & Kumar, Anil & Kumar, Arbind, 2016. "Review on various modelling techniques for the solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 396-417.
    8. Tagnamas, Zakaria & Idlimam, Ali & Lamharrar, Abdelkader, 2023. "Predictive models of beetroot solar drying process through machine learning algorithms," Renewable Energy, Elsevier, vol. 219(P2).
    9. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    10. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Arıcı, Müslüm & Wang, Yunfeng & Li, Ming & Emam Hassanien, Reda Hassanien & Shirkole, Shivanand S., 2024. "Experimental investigation, performance analysis, and optimization of hot air convective drying of date fruits via response surface methodology," Renewable Energy, Elsevier, vol. 226(C).
    11. Torki-Harchegani, Mehdi & Ghanbarian, Davoud & Ghasemi Pirbalouti, Abdollah & Sadeghi, Morteza, 2016. "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 407-418.
    12. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Yao, Muchi & Li, Ming & Zhang, Yi & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Deng, Zhihan & Xing, Tianyu & Zhu, Yinlong, 2025. "Performance, energy and exergy analysis of solar-assisted heat pump drying system with heat recovery: A comprehensive experimental study," Renewable Energy, Elsevier, vol. 244(C).
    3. Taesub Lim & Yong-Kyu Baik & Daeung Danny Kim, 2020. "Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming," Energies, MDPI, vol. 13(15), pages 1-9, July.
    4. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    5. Cruz, Fernanda Paola Butarelli & Johann, Gracielle & de Oliveira, Kamila Cavalcante & Palú, Fernando & da Silva, Edson Antonio & Guirardello, Reginaldo & Curvelo Pereira, Nehemias, 2017. "Crambe grain drying: Evaluation of a linear and double resistance driving force model and energetic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1-8.
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    7. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    9. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    10. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    11. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    12. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    13. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    14. Roman Dyga & Małgorzata Płaczek, 2024. "Experimental Investigation and Calculation of Convective Heat Transfer in Two-Component Gas–Liquid Flow Through Channels Packed with Metal Foams," Energies, MDPI, vol. 17(21), pages 1-24, October.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    17. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    18. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    19. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    20. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125006238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.