IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp414-424.html
   My bibliography  Save this article

Reduced graphene oxide layer on nanostructured SnS thin films for improved visible light photoelectrochemical activity

Author

Listed:
  • Sharma, Dipika
  • Yadav, Jyoti
  • Mehta, B.R.

Abstract

The deposition of reduced graphene oxide over layer on the SnS thin films had been shown to be an effective tool to improve its photoelectrochemical response. Pure phase SnS thin films were prepared using simple and inexpensive thermal evaporation method on ITO glass substrate followed by the deposition of reduced graphene oxide (rGO) layer by drop cast method. Samples were characterized using X-ray diffraction, Raman, scanning electron microscopy, UV–Visible absorption spectroscopy and their photoelectrochemical activity has been investigated. The results show the formation of pure phase SnS having orthorhombic crystal structure with optical band gap of 2.0 eV, rGO layer enhances the absorption in visible region. Maximum photocurrent density exhibited by SnS/0.1 wt% rGO was observed to be 1.1 mA/cm2 as compared to pristine SnS (0.3 mA/cm2) at 0.95V Ag/AgCl with enhanced photostability up to 1 h. Graphene oxide over layer acts as protecting layer for SnS in the electrolyte and plays a promising role in enhancing the charge carriers separation at the interface on account of being an electron reservoir to accept the photoexcited electrons. This work highlights the role of rGO and SnS interface on the photoelectrochemical water splitting.

Suggested Citation

  • Sharma, Dipika & Yadav, Jyoti & Mehta, B.R., 2021. "Reduced graphene oxide layer on nanostructured SnS thin films for improved visible light photoelectrochemical activity," Renewable Energy, Elsevier, vol. 169(C), pages 414-424.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:414-424
    DOI: 10.1016/j.renene.2021.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Dipika & Upadhyay, Rishibrind Kumar & Satpati, Biswarup & Satsangi, Vibha R. & Shrivastav, Rohit & Waghmare, Umesh V. & Dass, Sahab, 2017. "Electronic band-offsets across Cu2O/BaZrO3 heterojunction and its stable photo-electro-chemical response: First-principles theoretical analysis and experimental optimization," Renewable Energy, Elsevier, vol. 113(C), pages 503-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadav, Jyoti & Raturi, Parul & Yadav, Sarjana & Singh, J.P., 2021. "Zig-zag Ag2S nanostructures for superior optical absorption and photoelectrochemical water splitting performance," Renewable Energy, Elsevier, vol. 179(C), pages 2256-2266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaur, Gurpreet & Divya, & Khan, Saif A. & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2021. "Nano-hetero-structured thin films, ZnO/Ag-(α)Fe2O3, with n/n junction, as efficient photoanode for renewable hydrogen generation via photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 164(C), pages 156-170.
    2. Yadav, Jyoti & Raturi, Parul & Yadav, Sarjana & Singh, J.P., 2021. "Zig-zag Ag2S nanostructures for superior optical absorption and photoelectrochemical water splitting performance," Renewable Energy, Elsevier, vol. 179(C), pages 2256-2266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:414-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.