IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp168-174.html
   My bibliography  Save this article

Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate

Author

Listed:
  • Rani, Gini
  • Nabi, Zahid
  • Rajesh Banu, J.
  • Yogalakshmi, K.N.

Abstract

A fed batch membraneless microbial electrolysis cell (MEC) was investigated for treating combined leachate and dairy wastewater at an applied voltage 0.8 V and hydraulic retention time (HRT) of 48 h. The COD (chemical oxygen demand) removal and energy recovery was tested by running several cycles of MEC with increasing ratios of leachate to dairy wastewater. With an increase in percentage of simulated leachate, MEC performance in terms of current generation, COD removal efficiency and hydrogen production showed a gradual decrease. A sudden drop in reactor performance was noticed when the concentration of leachate was increased from 14 to 16% corresponding to an increase in Organic Load Rate (OLR) from 23.89gCOD/m3/d to 24gCOD/m3/d. A continued operation of MEC at an OLR of 24gCOD/m3/d for ten continuous cycles resulted in COD removal efficiency of 73% and hydrogen production of 15 mL/L/d with current density of 10 A/m2 and a power density of 80 mW/cm2.

Suggested Citation

  • Rani, Gini & Nabi, Zahid & Rajesh Banu, J. & Yogalakshmi, K.N., 2020. "Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate," Renewable Energy, Elsevier, vol. 153(C), pages 168-174.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:168-174
    DOI: 10.1016/j.renene.2020.01.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:168-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.