IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp691-698.html
   My bibliography  Save this article

Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution

Author

Listed:
  • Yang, Lingyan
  • Liu, Jing
  • Yang, Liping
  • Zhang, Mei
  • Zhu, Hui
  • Wang, Fu
  • Yin, Jiao

Abstract

Co3O4 imbedded g-C3N4 (Co3O4/g-C3N4) heterojunction photocatalysts were synthesized via initial dissolution of C, N and Co organic precursors in aqueous phase, subsequent evaporation of water and final thermopolymerization. This facile aqueous-induced complexation of organic precursors guaranteed that Co3O4 was homogeneously dispersed in g-C3N4 matrix even if the mass loading of Co3O4 reached up to 0.3–3 wt %. The as-constructed Co3O4/g-C3N4 composites were applied in visible-light-driven hydrogen evolution for the first time in which the mass loading of Co3O4 was optimized at 1 wt %, achieving a maximal hydrogen evolution rate of 50 μmol/h/g, as higher as 5 times than those of pure g-C3N4 and Co3O4. The enhanced photocatalytic activity of Co3O4/g-C3N4 composites was originated from well-established p-n heterojunctions when certain amount of p-type Co3O4 nanoparticles were introduced and highly dispersed into n-type g-C3N4 matrix. The Co3O4/g-C3N4 p-n heterojunctions effectively retard the recombination of photoinduced electron-hole pairs, promote charge separation, extend visible light absorption range and finally improve photocatalytic hydrogen evolution activity and stability. As a result, this facile, effective, green and universal strategy opens up new horizons to realize high dispersion of metal oxides in g-C3N4 matrix and to achieve higher performance in photocatalytic activity.

Suggested Citation

  • Yang, Lingyan & Liu, Jing & Yang, Liping & Zhang, Mei & Zhu, Hui & Wang, Fu & Yin, Jiao, 2020. "Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution," Renewable Energy, Elsevier, vol. 145(C), pages 691-698.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:691-698
    DOI: 10.1016/j.renene.2019.06.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janani, R. & Priyanga, G.Sudha & Behara, Santosh & Melvin, Ambrose Ashwin & Shaheer, A.R.M. & Thomas, Tiju & Neppolian, Bernaurdshaw & Singh, Shubra, 2020. "Enhanced solar light driven hydrogen generation and environment remediation through Nd incorporated ZnIn2S4," Renewable Energy, Elsevier, vol. 162(C), pages 2031-2040.
    2. Pan, Jiaqi & Liu, Yanyan & Ou, Wei & Li, Shi & Li, Hongli & Wang, Jingjing & Song, Changsheng & Zheng, Yingying & Li, Chaorong, 2020. "The photocatalytic hydrogen evolution enhancement of the MoS2 lamellas modified g-C3N4/SrTiO3 core-shell heterojunction," Renewable Energy, Elsevier, vol. 161(C), pages 340-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:691-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.