IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1-12.html
   My bibliography  Save this article

Optimal reactive power dispatch of permanent magnet synchronous generator-based wind farm considering levelised production cost minimisation

Author

Listed:
  • Li, Jian
  • Wang, Ni
  • Zhou, Dao
  • Hu, Weihao
  • Huang, Qi
  • Chen, Zhe
  • Blaabjerg, Frede

Abstract

As wind power penetration increases, large wind farms (WFs) need to provide reactive power according to modern grid codes. Permanent magnet synchronous generator-based wind turbines (WTs) can generate reactive power, by assigning the appropriate reactive power to each WT to meet the reactive power requirements of the grid. This is a more economical method than setting up additional reactive power compensation equipment. This study proposes an optimal reactive power dispatch strategy for minimising a levelised production cost, and is implemented in two ways: minimising the power loss of a WF, and maximising the lifetime of WTs. The reactive power references of each WT are chosen as the optimisation variables, and a particle swarm optimisation algorithm is adopted to solve the optimisation problem. The proposed and traditional reactive power dispatch strategies are demonstrated and compared on a WF with 25 WTs to validate the effectiveness of the proposed approach.

Suggested Citation

  • Li, Jian & Wang, Ni & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal reactive power dispatch of permanent magnet synchronous generator-based wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 145(C), pages 1-12.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1-12
    DOI: 10.1016/j.renene.2019.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ni & Li, Jian & Yu, Xiang & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 148(C), pages 113-123.
    2. Lenin Kanagasabai, 2022. "Tangible power loss lessening by hybridized beautiful demoiselle-enriched particle swarm and pyramid optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 450-468, February.
    3. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    4. Liao, Hao & Hu, Weihao & Wu, Xiawei & Wang, Ni & Liu, Zhou & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Active power dispatch optimization for offshore wind farms considering fatigue distribution," Renewable Energy, Elsevier, vol. 151(C), pages 1173-1185.
    5. Shojaei, Amir Hossein & Ghadimi, Ali Asghar & Miveh, Mohammad Reza & Gandoman, Foad H. & Ahmadi, Abdollah, 2021. "Multiobjective reactive power planning considering the uncertainties of wind farms and loads using Information Gap Decision Theory," Renewable Energy, Elsevier, vol. 163(C), pages 1427-1443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.