IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp527-542.html
   My bibliography  Save this article

Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke

Author

Listed:
  • Xu, Shannan
  • Uzoejinwa, Benjamin Bernard
  • Wang, Shuang
  • Hu, Yamin
  • Qian, Lili
  • Liu, Lu
  • Li, Bin
  • He, Zhixia
  • Wang, Qian
  • Abomohra, Abd El-Fatah
  • Li, Chunhou
  • Zhang, Bo

Abstract

This study investigates the characteristics of pyrolysis char/coke and elemental morphological changes on surface of char/coke produced, during co-pyrolysis of seaweed (EN) and rice husk (HU) at various temperatures through XPS, FTIR and SEM analysis methods. Analysis of pyrolysis products including by-products will help to partly explore co-pyrolysis synergistic mechanisms of the seaweed and rice husk. Thus, fast pyrolysis of EN and HU was conducted in a fixed bed reactor. Coke/char from the individual pyrolysis of EN and HU respectively at different temperatures, and those from co-pyrolysis of EN and HU (1:1) at 550 °C, were analyzed. Results revealed that the co-pyrolysis process has synergistic effects. Moreover, the release of nitrogenous substances was found to be inhibited by addition of HU at low temperature (<190 °C) range. It was also observed that co-pyrolysis of EN with HU does not only facilitates pyrolysis of aliphatic CO functional groups at the middle temperature range, but also contributes to the cleavage of ether bonds of some water-soluble polysaccharides at high temperature (320–550 °C) level, hence generating aromatic compounds. Besides, the analysis of pore structures, pore size distributions and fractal dimensions of pyrolysis char/coke also show that the co-pyrolysis process has a synergistic effect.

Suggested Citation

  • Xu, Shannan & Uzoejinwa, Benjamin Bernard & Wang, Shuang & Hu, Yamin & Qian, Lili & Liu, Lu & Li, Bin & He, Zhixia & Wang, Qian & Abomohra, Abd El-Fatah & Li, Chunhou & Zhang, Bo, 2019. "Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke," Renewable Energy, Elsevier, vol. 132(C), pages 527-542.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:527-542
    DOI: 10.1016/j.renene.2018.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badshah, Syed Lal & Shah, Zahir & Francisco Alves, José Luiz & Gomes da Silva, Jean Constantino & Iqbal, Arshad, 2021. "Pyrolysis of the freshwater macroalgae Spirogyra crassa: Evaluating its bioenergy potential using kinetic triplet and thermodynamic parameters," Renewable Energy, Elsevier, vol. 179(C), pages 1169-1178.
    2. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:527-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.