IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i4p480-488.html
   My bibliography  Save this article

Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions

Author

Listed:
  • Baraldi, Piero
  • Razavi-Far, Roozbeh
  • Zio, Enrico

Abstract

An important requirement for the practical implementation of empirical diagnostic systems is the capability of classifying transients in all plant operational conditions. The present paper proposes an approach based on an ensemble of classifiers for incrementally learning transients under different operational conditions. New classifiers are added to the ensemble where transients occurring in new operational conditions are not satisfactorily classified. The construction of the ensemble is made by bagging; the base classifier is a supervised Fuzzy C Means (FCM) classifier whose outcomes are combined by majority voting. The incremental learning procedure is applied to the identification of simulated transients in the feedwater system of a Boiling Water Reactor (BWR) under different reactor power levels.

Suggested Citation

  • Baraldi, Piero & Razavi-Far, Roozbeh & Zio, Enrico, 2011. "Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 480-488.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:4:p:480-488
    DOI: 10.1016/j.ress.2010.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010002450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    2. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    3. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:4:p:480-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.