IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i5p628-645.html
   My bibliography  Save this article

Consistent mapping of common cause failure rates and alpha factors

Author

Listed:
  • Vaurio, Jussi K.

Abstract

The problem addressed is how to combine event experience data from multiple source plants to estimate common cause failure (CCF) rates for a target plant. Alternative models are considered for transforming CCF parameters from systems with different numbers of similar components to obtain CCF-rates for a specific group of components. Two sets of rules are reviewed and compared for transforming rates and assessment uncertainties from larger to smaller systems, i.e. mapping down. Mapping down equations are presented also for the alpha-factors and for the variances of CCF rates. Consistent rules are developed for mapping up CCF-rates and uncertainties from smaller to larger systems. These mapping up rules are not limited to a binomial CCF model. It is shown how consistency requirements set certain limits to possible parametric values. Empirical alpha factors are used to estimate robust mapping parameters, and mapping up equations are derived for alpha factors as well. An assessment uncertainty procedure is presented for treating incomplete or vague information when estimating CCF-rates. Numerical studies illustrate mapping rules and procedures. Recommendations are made for practical applications.

Suggested Citation

  • Vaurio, Jussi K., 2007. "Consistent mapping of common cause failure rates and alpha factors," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 628-645.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:628-645
    DOI: 10.1016/j.ress.2006.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jussi K. Vaurio, 1994. "Estimation of Common Cause Failure Rates Based on Uncertain Event Data," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 383-387, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    2. KanÄ ev, DuÅ¡ko & ÄŒepin, Marko, 2012. "A new method for explicit modelling of single failure event within different common cause failure groups," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 84-93.
    3. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    4. Atwood, Corwin L., 2013. "Consequences of mapping data or parameters in Bayesian common-cause analysis," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 118-131.
    5. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    6. W Mechri & C Simon & K Ben Othman, 2011. "Uncertainty analysis of common cause failure in safety instrumented systems," Journal of Risk and Reliability, , vol. 225(4), pages 450-460, December.
    7. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    8. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    9. Hoepfer, V.M. & Saleh, J.H. & Marais, K.B., 2009. "On the value of redundancy subject to common-cause failures: Toward the resolution of an on-going debate," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1904-1916.
    10. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaurio, Jussi K. & Jänkälä, Kalle E., 2006. "Evaluation and comparison of estimation methods for failure rates and probabilities," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 209-221.
    2. Vaurio, Jussi K., 2005. "Uncertainties and quantification of common cause failure rates and probabilities for system analyses," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 186-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:628-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.