IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v264y2025ipbs0951832025006465.html
   My bibliography  Save this article

Enhancing Binary-State Network Reliability with Layer-Cut BAT-MCS

Author

Listed:
  • Yeh, Wei-Chang

Abstract

This paper introduces layer-cut BAT-MCS, an enhanced algorithm for binary-state network reliability assessment. The original BAT-MCS integrates the deterministic Binary Addition Tree (BAT) algorithm with stochastic Monte Carlo simulation (MCS) in terms of the novel supervectors, creating a self-regulating mechanism that reduces variance and improves efficiency. Despite its advantages, BAT-MCS exhibits limitations in supervector selection methodology and computational complexity of approximate reliability calculations. The proposed layer-cut BAT-MCS addresses these weaknesses through a novel layer-cut approach for supervector selection that significantly outperforms traditional min-cut methods. This innovation simplifies MCS complexity while maintaining comprehensive network analysis capabilities. Extensive numerical experiments conducted on small and medium-sized binary-state networks demonstrate that layer-cut BAT-MCS achieves superior computational efficiency and accuracy compared to both traditional MCS and the original BAT-MCS implementations. The results indicate that the layer-cut technique provides a more efficient network decomposition strategy, substantially reducing both runtime and variance. These improvements make layer-cut BAT-MCS particularly valuable for reliability assessment of small-scale or sparse network systems where computational resources are limited and high accuracy is required.

Suggested Citation

  • Yeh, Wei-Chang, 2025. "Enhancing Binary-State Network Reliability with Layer-Cut BAT-MCS," Reliability Engineering and System Safety, Elsevier, vol. 264(PB).
  • Handle: RePEc:eee:reensy:v:264:y:2025:i:pb:s0951832025006465
    DOI: 10.1016/j.ress.2025.111446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025006465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:264:y:2025:i:pb:s0951832025006465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.