IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v264y2025ipbs0951832025005496.html
   My bibliography  Save this article

Reliability analysis and layout optimization for a multi-component system with thermal coupling

Author

Listed:
  • Xu, Dong
  • Tian, Yubin
  • Wang, Dianpeng
  • Shi, Junbiao

Abstract

An important feature of power and electronic devices is that their operation is accompanied by the release of heat, which leads to thermal coupling between components, that is, the interaction of temperatures between adjacent components. This phenomenon reflects spatial dependence and is rarely considered in reliability analyses. In this study, a reliability model was proposed for a multi-component system with thermal coupling and was subsequently extended to a competing failure model. Additionally, considering that different components have different workloads, components with higher workloads should be located further away from each other to reduce the probability of high temperatures caused by the simultaneous operation of the components, thus increasing the system’s reliability. Through the innovative use of the minimum energy criterion, we present a layout optimization approach to this issue. Furthermore, the larger the component spacing, the weaker the thermal coupling effect, the higher the system reliability, and the bulkier the system. Therefore, a trade-off must be made. A redundancy allocation problem was studied, that is, minimizing the system volume while considering a given reliability constraint. A numerical example demonstrates the effectiveness of layout optimization in improving reliability and illustrates the application of the proposed methods.

Suggested Citation

  • Xu, Dong & Tian, Yubin & Wang, Dianpeng & Shi, Junbiao, 2025. "Reliability analysis and layout optimization for a multi-component system with thermal coupling," Reliability Engineering and System Safety, Elsevier, vol. 264(PB).
  • Handle: RePEc:eee:reensy:v:264:y:2025:i:pb:s0951832025005496
    DOI: 10.1016/j.ress.2025.111348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025005496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:264:y:2025:i:pb:s0951832025005496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.