IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v264y2025ipas0951832025005605.html
   My bibliography  Save this article

Mutual-learning based self-supervised knowledge distillation framework for remaining useful life prediction under variable working condition-induced domain shift scenarios

Author

Listed:
  • Chen, Zhuohang
  • Chen, Jinglong
  • Liu, Zijun
  • Liu, Yulang

Abstract

Domain shifts induced by variable working conditions, including both multiple steady and time-varying working conditions, result in inconsistent degradation patterns and pose significant challenges for remaining useful life (RUL) prediction. To address the above issue, we propose a self-supervised knowledge distillation framework based on mutual learning for RUL prediction under variable working conditions. The proposed framework employs a teacher-student architecture, facilitating knowledge transfer through self-supervised pseudo-labels. A mutual learning-based training strategy is developed to prevent over-adaptation to the source domain and promote domain generalization. Additionally, during student model training, a feature-level domain adversarial training strategy is implemented to improve cross-domain feature decoupling and ensure the learning of domain-invariant features. The above two components complement each other: adversarial learning aligns marginal distributions (variable working conditions), while pseudo-label learning refines conditional alignment (normal and fast degradation stages), allowing the model to adapt more effectively to complex degradation scenarios. Furthermore, we incorporate a sparse attention mechanism for efficient feature extraction, significantly reducing computational complexity while maintaining robust performance. The RUL prediction experiments under multi steady conditions and time-varying conditions are carried out on two life-cycle bearing datasets respectively. Comparative results demonstrate the superiority and practicality of our proposed method.

Suggested Citation

  • Chen, Zhuohang & Chen, Jinglong & Liu, Zijun & Liu, Yulang, 2025. "Mutual-learning based self-supervised knowledge distillation framework for remaining useful life prediction under variable working condition-induced domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 264(PA).
  • Handle: RePEc:eee:reensy:v:264:y:2025:i:pa:s0951832025005605
    DOI: 10.1016/j.ress.2025.111359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025005605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:264:y:2025:i:pa:s0951832025005605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.